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Introduction Problem

Problem

Compute the exact distribution of runs and patterns in a sequence of

multi-state trial outcomes generated by an i.i.d. or Markov source.

Di�erent approaches

1 Traditional approach: combinatorial methods

i.i.d. case (Makri 1986 and Hirano 1986)

2 Markov Chain Imbedding Technique (Fu and Koutras 1994)

i.i.d. case
Markov chain case
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Description of the method De�nitions and main results

Given X1,X2, . . . ,Xn a sequence of multi-state trials over the alphabet

S = {b1, . . . , bm} we say that

Λ is a simple pattern if Λ = bi1bi2 . . . bik where bij ∈ S for all j = 1, k

Λ1 and Λ2 are distinct if neither Λ1 ⊂ Λ2 nor Λ2 ⊂ Λ1

the union Λ1 ∪ Λ2 denote the occurrence of either Λ1 or Λ2

Λ is a compound pattern if it can be written as the union of simple

distinct patterns

Xn(Λ) denote the number of occurrences of the pattern Λ in the

sequence X1,X2, . . . ,Xn using both overlapping and non-overlapping

counting scheme

Example

Consider a simple pattern Λ = ACA over the alphabet S = {A,C ,G ,T}
and the realization: ATCACACATAGACACAGTAC

X20(Λ) = 2 under non-overlapping scheme

X20(Λ) = 4 under overlapping scheme
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Description of the method De�nitions and main results

De�nition

Given a compound pattern Λ we say that Xn(Λ) is �nite Markov chain

imbeddable if:

there exists a �nite Markov chain {Yt |t = 0, 1, . . . , n} de�ned on a

�nite state space Ω = {a1, a2, . . . , as} with initial probability vector ξ0

there exists a �nite partition {Cx |x = 0, 1, . . . , ln} on the state space

for every x = 0, 1, . . . , ln we have

P(Xn(Λ) = x) = P(Yn ∈ Cx |ξ0)

A. Am rioarei (Laboratoire P. Painlevé ) MCIT and applications SPSR 2011 7 / 34



Description of the method De�nitions and main results

De�nition

Given a compound pattern Λ we say that Xn(Λ) is �nite Markov chain

imbeddable if:

there exists a �nite Markov chain {Yt |t = 0, 1, . . . , n} de�ned on a

�nite state space Ω = {a1, a2, . . . , as} with initial probability vector ξ0

there exists a �nite partition {Cx |x = 0, 1, . . . , ln} on the state space

for every x = 0, 1, . . . , ln we have

P(Xn(Λ) = x) = P(Yn ∈ Cx |ξ0)

A. Am rioarei (Laboratoire P. Painlevé ) MCIT and applications SPSR 2011 7 / 34



Description of the method De�nitions and main results

De�nition

Given a compound pattern Λ we say that Xn(Λ) is �nite Markov chain

imbeddable if:

there exists a �nite Markov chain {Yt |t = 0, 1, . . . , n} de�ned on a

�nite state space Ω = {a1, a2, . . . , as} with initial probability vector ξ0

there exists a �nite partition {Cx |x = 0, 1, . . . , ln} on the state space

for every x = 0, 1, . . . , ln we have

P(Xn(Λ) = x) = P(Yn ∈ Cx |ξ0)

A. Am rioarei (Laboratoire P. Painlevé ) MCIT and applications SPSR 2011 7 / 34



Description of the method De�nitions and main results

De�nition

Given a compound pattern Λ we say that Xn(Λ) is �nite Markov chain

imbeddable if:

there exists a �nite Markov chain {Yt |t = 0, 1, . . . , n} de�ned on a

�nite state space Ω = {a1, a2, . . . , as} with initial probability vector ξ0

there exists a �nite partition {Cx |x = 0, 1, . . . , ln} on the state space

for every x = 0, 1, . . . , ln we have

P(Xn(Λ) = x) = P(Yn ∈ Cx |ξ0)

A. Am rioarei (Laboratoire P. Painlevé ) MCIT and applications SPSR 2011 7 / 34



Description of the method De�nitions and main results

An application of Chapman-Kolmogorov equations leads to:

Theorem

If Xn(Λ) is �nite Markov chain imbeddable, then

P(Xn(Λ) = x) = ξ0M
n
U

ᵀ(Cx)

ξ0 = P(Y0 = a1,Y0 = a2, . . . ,Y0 = as) is the initial probability vector

M is the transition probability matrix of (Yt)t=0,n

U(Cx) =
∑

aj∈Cx
ej and ej = (0, . . . , 1, . . . , 0)1×s is an unit vector

corresponding to aj

The imbedded chain may be

homogeneous

non-homogeneous and Mn →
∏n

t=1Mt
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Description of the method The forward-backward principle

Question:

Can we always imbed a random variable associated with a speci�ed pattern

into a Markov chain?

...one way is by using forward-backward procedure developed by Fu (1996)

based on

a proper understanding of the structure of the speci�ed pattern

the counting procedure applied throughout the sequence
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Description of the method The forward-backward principle

Non-overlap counting

Given

(Xt)t=1,n - Markov dependent

A =

 p11 p12 p13
p21 p22 p23
p31 p32 p33


the alphabet S = {b1, b2, b3}
the simple pattern Λ = b1b1b1b2
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Description of the method The forward-backward principle

We will give the method in �ve steps:

Step1 de�ne S(Λ) = {b1, b1b1, b1b1b1, b1b1b1b2} the set of all sequential

sub-patterns and

E = S ∪ S(Λ) = {b1, b2, b3, b1b1, b1b1b1, b1b1b1b2}

Step2 de�ne the state space

Ω = {(u, v)|u = 0, 1, . . . , [n/4], v ∈ E} ∪ {∅}�{(0, b1b1b1b2)}
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Description of the method The forward-backward principle

1 2 3 4 t ′ t

u of the Λ patterns

no Λ pattern

sub-pattern v
Counting Forward Counting Backward

Step3 de�ne the Markov chain

Yt = (Xt(Λ),Et), t = 1, 2, . . . , n

such that Yt(ω) = (u, v) ∈ Ω, where

u = Xt(Λ)(ω) - the total number of non-overlapping occurrences of the
pattern Λ in the �rst t trials, counting forward from the �rst to the
t-th trial

v = Et(ω) - the longest ending block in E , counting backward from Xt .
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Step3 de�ne the Markov chain

Yt = (Xt(Λ),Et), t = 1, 2, . . . , n

such that Yt(ω) = (u, v) ∈ Ω, where

u = Xt(Λ)(ω) - the total number of non-overlapping occurrences of the
pattern Λ in the �rst t trials, counting forward from the �rst to the
t-th trial

v = Et(ω) - the longest ending block in E , counting backward from Xt .
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Description of the method The forward-backward principle

Considering the realization:

ω = (b2b3b1b1b2b1b1b1b2b1b3b1)

Y1(ω) = (0, b2) Y5(ω) = (0, b2) Y9(ω) = (1, b1b1b1b2)

Y2(ω) = (0, b3) Y6(ω) = (0, b1) Y10(ω) = (1, b1)

Y3(ω) = (0, b1) Y7(ω) = (0, b1b1) Y11(ω) = (1, b3)

Y4(ω) = (0, b1b1) Y8(ω) = (0, b1b1b1) Y12(ω) = (1, b1)
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Description of the method The forward-backward principle

Step4 the transition matrix M can be determined for example by

(0, b1b1b1)→


(0, b1b1b1), X9 = b1, probability is p11
(1, b1b1b1b2), X9 = b2, probability is p12
(0, b3), X9 = b3, probability is p13

∅ - the dummy state

P(Y1 = bi |Y0 = ∅) = pi with i = 1, 2, 3 the initial distribution

Step5 the partition

Cx =


C∅ = {∅}
C0 = {(0, b1), (0, b2), (0, b3), (0, b1b1), (0, b1b1b1)}
Cz = {(z , v)|v ∈ E , z = 1, . . . , [n/4]}.
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Description of the method The forward-backward principle

The transition matrix (n = 5) M :



∅ a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11

0 p1 p2 p3 0 0 0 0 0 0 0 0

0 0 p12 p13 p11 0 0 0 0 0 0 0

0 p21 p22 p23 0 0 0 0 0 0 0 0

0 p31 p32 p33 0 0 0 0 0 0 0 0

0 0 p12 p13 0 p11 0 0 0 0 0 0

0 0 0 p13 0 p11 p12 0 0 0 0 0

0 0 0 0 0 0 0 p21 p22 p23 0 0

0 0 0 0 0 0 0 0 p12 p13 p11 0

0 0 0 0 0 0 0 p21 p22 p23 0 0

0 0 0 0 0 0 0 p31 p32 p33 0 0

0 0 0 0 0 0 0 0 p12 p13 0 p11
0 0 0 0 0 0 0 0 0 0 0 1


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Waiting time distributions De�nitions and main results

De�nition

the waiting time for a simple pattern Λ = bi1bi2 . . . bik

W (Λ) = inf{n|Xn−k+1 = bi1 , . . . ,Xn = bik}

the waiting time of a compound pattern Λ = ∪li=1Λi

W (Λ) = minimum number of trials required to observe the occurrence

of one of the simple patterns Λ1, . . . ,Λl

the waiting time of the r -th occurrence of the pattern Λ
W (r ,Λ) = minimum number of trials required to observe the r -th

occurrence of the pattern Λ

The duality property:

P(Xn(Λ) < r) = P(W (r ,Λ) > n).
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Waiting time distributions De�nitions and main results

Given:

the Markov chain (Xt)1,∞ over the alphabet S = {b1, . . . , bm}
compound pattern Λ = ∪li=1Λi

we have using the forward-backward principle:

the state space

Ω = {∅} ∪ S ∪li=1 S(Λi )

A = {α1, . . . , αl} the set of absorbing states corresponding to the

simple pattern Λi

for Yt−1 = u ∈ Ω�A�{∅} and Xt = z ∈ S we de�ne the longest

ending block

v =< u, z >Ω

and the set

[u : S] = {v |v ∈ Ω, v =< u, z >Ω, z ∈ S}
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Waiting time distributions De�nitions and main results

Theorem

1 the transition probabilities of the imbedded Markov chain Yt ,

pu,v = P(Yt = v |Yt−1 = u) =


pz , if u = ∅, v = z , z ∈ S
pxz , if u ∈ Ω�A�{∅}

v ∈ [u : S] and Xt = z

1, if u ∈ A and v = u

0, otherwise

where x is the last symbol of u and pz = P(Y1 = z |Y0 = ∅)

M =

(
N(d−l)×(d−l) C

O I

)
d×d

2 given the initial distribution ξ0 = (ξ : 0)

P(W (Λ) = n) = ξNn−1(I −N)1ᵀ
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Waiting time distributions De�nitions and main results

Waiting time of the r -th occurrence

For W (r ,Λ)

the state space

Ω(r) = {∅} ∪ Ω1 ∪ Ω2 ∪ A

A = {α1, . . . , αl} is the set of all the absorbing states αj

corresponding to the r -th occurrence of the pattern Λj

Ω1 = {(u, v)|u = 0, . . . , r − 1; v ∈ S ∪ S(Λ1) · · · ∪ S(Λl )�A},
Ω2 = {(u, v)|u = 1, . . . , r − 1; v ∈ B}

where B is the collection of the last symbols of Λi , i = 1, . . . , l (we
add some mark to distinguish from S)
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Waiting time distributions An example

Example

Given,

the alphabet S = {A,C ,G ,T}
the Chi motif Λ = GNTGGTGG where N ∈ S
the transition matrix (estimated over Escherichia Coli genome)


A C G T

pAA pAC pAG pAT
pCA pCC pCG pCT
pGA pGC pGG pGT
pTA pTC pTG pTT

 =


A C G T

0.30 0.21 0.22 0.27
0.23 0.23 0.32 0.22
0.28 0.29 0.23 0.20
0.19 0.28 0.23 0.30


and the stationary distribution

µ = (0.2501, 0.2524, 0.2502, 0.2473)
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Waiting time distributions An example

Comparison between i.i.d. and Markov case:
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Applications to Scan Statistics Model

Scan Statisitcs

(Xt)t=1,n - two-state Markov dependent

P =

(
p00 p01
p10 p11

)
the scan statistic of window size r

Sn(r) = max
r≤t≤n

t∑
k=t−r+1

Xk .

the idea is to express the distribution of the Sn(r) in terms of the

waiting time distribution of a special compound pattern
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Applications to Scan Statistics Model

Distribution of Scan Statistics in 4 Steps

1 de�ne for 0 ≤ k ≤ r

Fr ,k = {Λi |Λ1 = 1 . . . 1︸ ︷︷ ︸
k

,Λ2 = 10 1 . . . 1︸ ︷︷ ︸
k−1

, . . . ,Λl =

r︷ ︸︸ ︷
1 . . . 1︸ ︷︷ ︸
k−1

0 . . . 01}

∣∣Fr ,k

∣∣ =
r−k∑
j=0

(
k − 2 + j

j

)
2 the compound pattern Λ = ∪li=1Λi , Λi ∈ Fr ,k
3 the dual property

P(Sn(r) < k) = P(W (Λ) ≥ n + 1).

4 the matrix formula

P(Sn(r) < k) = ξNn
1
ᵀ,where ξ = (1, 0, . . . , 0)

A. Am rioarei (Laboratoire P. Painlevé ) MCIT and applications SPSR 2011 27 / 34
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Applications to Scan Statistics Model

Example

an illustration for n = 20 and r = 3

0 0 1 0 1 0 1 1 1 0 1 1 0 1 0 1 0 1 1 0

S20(3) = 1

for r = 4 and k = 3

F4,3 = {Λ1 = 111,Λ2 = 1011,Λ3 = 1101}

the state space

Ω = {∅, 0, 1, 10, 11, 101, 110, α1, α2, α3}
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Applications to Scan Statistics Model

the transition matrix M :

0 q p 0 0 0 0
... 0 0 0

0 p00 p01 0 0 0 0
... 0 0 0

0 0 0 p10 p11 0 0
... 0 0 0

0 p00 0 0 0 p01 0
... 0 0 0

0 0 0 0 0 0 p10
... p11 0 0

0 0 0 p10 0 0 0
... 0 p11 0

0 p00 0 0 0 0 0
... 0 0 p01

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

0 0 0 0 0 0 0
... 1 0 0

0 0 0 0 0 0 0
... 0 1 0

0 0 0 0 0 0 0
... 0 0 1


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Applications to Scan Statistics Numerical example
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Applications to Scan Statistics Numerical example

An example for windows size r = 10

n k (p, q) = (0.4091, 0.5909) p11 = 0.35, p21 = 0.45

100 5 2.3233× 10−4 2.0318× 10−4

6 0.0166 0.0233
7 0.1953 0.2801
8 0.6204 0.7488
9 0.9168 0.9638

300 5 5.8339× 10−12 3.7279× 10−12

6 2.9108× 10−6 8.1662× 10−6

7 0.0060 0.0185
8 0.2223 0.4014
9 0.7595 0.8896

500 5 1.4649× 10−19 6.8399× 10−20

6 5.1014× 10−10 2.8665× 10−9

7 1.8544× 10−4 0.0012
8 0.0796 0.2151
9 0.6292 0.8212
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Applications to Scan Statistics Numerical example

Comparison between i.i.d. and Markov case:
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Conclusions

Conclusions:

Advantages:

the method gives exact results for the distribution of Xn(Λ)
the method is simple than the traditional approach
the method can be used for both: i.i.d. and Markov chain sources

Disadvantages:

for big n the order of the state space and the transition matrix become
very large and in this case the need for approximations methods is
mandatory
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