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o Ais a simple pattern if N = b; b;, ... b, where b;; € S for all j = 1,k
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Example

Consider a simple pattern A = ACA over the alphabet S = {A,C,G, T}
and the realization: ATCACACATAGACACAGTAC

@ X20(A) = 2 under non-overlapping scheme

@ X5(A) = 4 under overlapping scheme
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Given a compound pattern A we say that X,(A) is finite Markov chain
imbeddable if:

o there exists a finite Markov chain {Y¢|t =0,1,...,n} defined on a
finite state space Q = {a1, a2, ..., as} with initial probability vector &

o there exists a finite partition {C|x =0,1,...,/,} on the state space

o forevery x =0,1,...,/, we have

P(Xa(A) = x) = P(Ya € C[€o)
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e & =P(Yo=a1, Yo =ap,..., Yo = as) is the initial probability vector

® M is the transition probability matrix of (Y:),_g+
o U(Cy) = Zajecx ej and g = (0,...,1,...,0)1xs is an unit vector
corresponding to aj

The imbedded chain may be
@ homogeneous
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Question:

Can we always imbed a random variable associated with a specified pattern
into a Markov chain?

...one way is by using forward-backward procedure developed by Fu (1996)
based on
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Description of the method The forward-backward principle

Question:

Can we always imbed a random variable associated with a specified pattern
into a Markov chain?

...one way is by using forward-backward procedure developed by Fu (1996)
based on

@ a proper understanding of the structure of the specified pattern

@ the counting procedure applied throughout the sequence
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Non-overlap counting

Given
® (Xt);—15 - Markov dependent

P11 P12 P13
A=\ pa1 pr p3
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Description of the method The forward-backward principle

Non-overlap counting

Given
® (Xt);—15 - Markov dependent

P11 P12 P13
A=\ pa1 pr p3
P31 P32 P33

o the alphabet S = {b1, by, b3}
@ the simple pattern A = b1 b1 b1 b>
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Description of the method The forward-backward principle

We will give the method in five steps:
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E=SUS(N) = {b1,bo, b3, biby, b1b1b1, biby by b}
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Step2 define the state space
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- N
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Counting Forward Counting Backward
u of the A patterns sub-pattern v

- N
1 2 3 4 t&\ no A pattern jt

Step3 define the Markov chain
Yt = (Xt(/\), Et), t = 1,2, .., n

such that Y;(w) = (u,v) € Q, where

u = X;(A)(w) - the total number of non-overlapping occurrences of the
pattern A in the first t trials, counting forward from the first to the
t-th trial

v = E;(w) - the longest ending block in &, counting backward from X;.
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Description of the method The forward-backward principle

Considering the realization:

w = (bybsby by byby by by by by byby )

Yiw) = (0,b2) | Ys(w) = (0, bo) Yo(w) = (1, by by b1 by)
Ya(w) =(0,b3) | Ye(w)=(0,b1) Y1o(w) = (1, b1)
Y3(w) = (0, bl) Y7(w) = (0, b1b1) Y11(w) (1 b3)
Y4(w) (0, b1b1) Yg(w) = (0, b1b1b1) Ylg(w) = (1 b1)
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Description of the method The forward-backward principle

Step4 the transition matrix M can be determined for example by
(0, blblbl), X9 = bl, probability is p11
(0, b1b1b1) — (1, blblblbz), X9 = b2, probability is P12
(0, b3), Xg = b3, probability is p13
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Description of the method The forward-backward principle

Step4 the transition matrix M can be determined for example by

(0, blblbl), X9 = bl, probability is p11
(0, b1b1b1) — (1, blblblbz), X9 = bz, probability is P12
(0, b3), Xg = b3, probability is p13

@ () - the dummy state
e P(Y1 = bi| Yo = 0) = p; with i = 1,23 the initial distribution
Step5 the partition
G = {0)

Ce={ Go={(0,b1),(0,bs), (0, bs), (0, bybr), (0, bybrby)}
C={(z,v)|lve & z=1,....[n/4]}.
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Description of the method The forward-backward principle

The transition matrix (n =5) M:

@ ai an
0 m P
0 0 pi2
0 pa1 p22
0 pa1 p32
0 0 p2
0 O 0
0 O 0
0 O 0
0 O 0
0 O 0
0 O 0
0 O 0

A. Amarioarei (Laboratoire P. Painlevé )
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p3
P13
P23
P33
P13
p13

OO OO O

a4

0

o
=
—

O O OO OO O o o o

a5 as ay
0 0 0
0 0 0
0 0 0
0 0 0
puii O 0
pi1 pr2 O
0 0 pxu
0 0 0
0 0 pu
0 0 pa
0 0 0
0 0 0
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VVETLL R TN IS TN Definitions and main results

Definition

o the waiting time for a simple pattern A = b; b, ... b;,

W(A) = inf{n|Xp_k41 = biy, ..., Xn = bi, }

@ the waiting time of a compound pattern A = Ufill\;
W(A) = minimum number of trials required to observe the occurrence
of one of the simple patterns Aq,..., /A

@ the waiting time of the r-th occurrence of the pattern A
W(r,\) = minimum number of trials required to observe the r-th
occurrence of the pattern A

The duality property:

P(Xa(N) < r) =P(W(r,A) > n).
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we have using the forward-backward principle:
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VVETLL R TN IS TN Definitions and main results

Given:
o the Markov chain (X;)7 over the alphabet S = {b1,..., bm}
@ compound pattern A = Ulel\,-
we have using the forward-backward principle:
@ the state space
Q= {0} USUL_; S(\)
o A={ou,...,q;} the set of absorbing states corresponding to the
simple pattern A;

o for Yi_1 = ue ONA\{0} and X; = z € S we define the longest
ending block
v=<u,z>q

and the set

[u:S]={vlveQ,v=<uz>q,ze S}
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VVETLL R TN IS TN Definitions and main results

Theorem
© the transition probabilities of the imbedded Markov chain Y,

ps, fu=0v=2z2z€S8
Pres ifu € QNANJ0)

puyv =P(Ye=v|Yeo1 =u) = ve[u:Sland Xy =z
1, fuecAandv=u
0, otherwise

where x is the last symbol of u and p, = P(Y1 = z|Yy = 0)

M — <N(dl)><(dl) C>
o dxd
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Theorem
© the transition probabilities of the imbedded Markov chain Y,

ps, fu=0v=2z2z€S8
Pres ifu € QNANJ0)

puyv =P(Ye=v|Yeo1 =u) = ve[u:Sland Xy =z
1, fuecAandv=u
0, otherwise

where x is the last symbol of u and p, = P(Y1 = z|Yy = 0)
M — (N(dl)x(dl) C>
% dxd

@ given the initial distribution &y = (& : 0)

P(W(A) = n) = EN"1(1 — N)1T
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Waiting time of the r-th occurrence

For W(r,N)
@ the state space
Q) = {PUQLUQLUA

o A={ai,...,q;} is the set of all the absorbing states «;
corresponding to the r-th occurrence of the pattern A;
°
Q ={(u,v)|lu=0,....,r =15, ve SUS(A1)---US(A))\A},
Q={(u,v)lu=1,...,r—1,veB}
where B is the collection of the last symbols of A;, i =1,...,/ (we

add some mark to distinguish from S)
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© Waiting time distributions

@ An example
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Waiting time distributions [EAGRSENTN

Example

Given,
o the alphabet S ={A,C,G, T}
o the Chi motif A = GNTGGTGG where N € S

@ the transition matrix (estimated over Escherichia Coli genome)

A C G T A C G T
PAA PAC PAG PAT 0.30 0.21 0.22 0.27
PCA PCC PCG PCT . 0.23 0.23 032 0.22
pca Pcc Pcc Pcr | | 028 0.29 0.23 0.20
PTA PTC PTG PTT 0.19 0.28 0.23 0.30

and the stationary distribution

1 = (0.2501,0.2524, 0.2502, 0.2473)
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Waiting time distributions [EAGRSENTN

Comparison between i.i.d. and Markov case:

Waiting time distribution

it Chi motif in Escherichia Coli
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@ Applications to Scan Statistics
o Model
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® (Xt)—15 - two-state Markov dependent
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Scan Statisitcs

® (X:);_15 - two-state Markov dependent

p— Poo  pPo1
P10 P11
@ the scan statistic of window size r

Sn(r) = max Z Xg.

rgtgn
k=t—r+1
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Applications to Scan Statistics Model

Scan Statisitcs

- two-state Markov dependent

p— (Poo P01)
P10 P11

@ the scan statistic of window size r

° (Xt)tzl n

Sn(r) = max X
n( r<t<n Z ke

k=t—r+1
o the idea is to express the distribution of the S,(r) in terms of the

waiting time distribution of a special compound pattern

A. Amarioarei (Laboratoire P. Painlevé ) MCIT and applications SPSR 2011 26 / 34



Model
Distribution of Scan Statistics in 4 Steps

Q definefor0 < k<r

——
Fok={N|Ar=1...1, A, =101...1 ..., Ay=1...10...01}
k k—1 k—1
r—k
-2
Fal =3 (72)
j=0
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Q definefor0 < k<r

——
Fre={NlM=1...1,Ay=101...1,...,A;=1...10...01}
k k—1 k—1
r—k .
k—2+
7l =3 (72
R

© the compound pattern A = Ule/\,-, Ni € Frk
© the dual property

P(Sa(r) < k) = P(W(A) > n +1).
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Model
Distribution of Scan Statistics in 4 Steps

Q definefor0 < k<r

——
Fre={NlM=1...1,Ay=101...1,...,A;=1...10...01}
k k—1 k—1
r—k .
k—2+
7l =3 (72
R

© the compound pattern A = Ule/\,-, Ni € Frk
© the dual property

P(S,(r) < k) =P(W(A) > n+1).
Q the matrix formula

P(Sn(r) < k) = EN"1T, where € = (1,0,...,0)
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Example

@ an illustration for n =20 and r = 3
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Applications to Scan Statistics Model

Example

@ an illustration for n =20 and r =3
lojofrfofifofzfafafof1]rfof1]oft]of1[1]0]
520(3) =3

o forr=4and k=3

Faz = {A =111, Ay = 1011, Az = 1101}
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Example

@ an illustration for n =20 and r =3
lojofrfofifofzfafafof1]rfof1]oft]of1[1]0]
520(3) =3

o forr=4and k=3

Faz = {A =111, Ay = 1011, Az = 1101}

o the state space

Q= {0,0,1,10,11,101,110, a1, 2, 03}
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Applications to Scan Statistics Model

@ the transition matrix M:

o O O O O O o
o
o
o

0 0 0 po
0 0 0 0 0 pio
0 0 po 0 0 0
0O 0 0 0 0

o
(]
o
o
o
o
o

A. Amarioarei (Laboratoire P. Painlevé ) MCIT and applications

0 0 0
0 0 0
0 0 0
0 0 0
pii O 0
0 puu O

0 0 po1
1 0 0
0 1 0
0 0 1
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@ Applications to Scan Statistics

@ Numerical example
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Applications to Scan Statistics Numerical example

An example for windows size r = 10

n | k| (p,q) =(0.4091,0.5909) | p11 = 0.35, po1 = 0.45
100 | 5 2.3233 x 10~* 2.0318 x 10~*
6 0.0166 0.0233
7 0.1953 0.2801
8 0.6204 0.7488
9 0.9168 0.9638
300 [ 5 5.8339 x 10~ 12 3.7279 x 10~ T2
6 2.9108 x 10~° 8.1662 x 10~°
7 0.0060 0.0185
8 0.2223 0.4014
9 0.7595 0.8896
500 | 5 1.4649 x 10719 6.8399 x 10~%°
6 5.1014 x 10710 2.8665 x 1079
7 1.8544 x 10~* 0.0012
8 0.0796 0.2151
9 0.6292 0.8212
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Comparison between i.i.d. and Markov case:
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Conclusions:

o Advantages:
o the method gives exact results for the distribution of X,(A)
o the method is simple than the traditional approach
o the method can be used for both: i.i.d. and Markov chain sources

o Disadvantages:
o for big n the order of the state space and the transition matrix become
very large and in this case the need for approximations methods is
mandatory
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