The Markov Chain Imbedding Technique Application to Scan Statistics

Alexandru Amărioarei

Laboratoire de Mathématiques Paul Painlevé Département de Probabilités et Statistique Université de Lille 1

SPSR Conference, 2011

A. Amărioarei (Laboratoire P. Painlevé)

MCIT and applications

SPSR 2011 1 / 34

Outline

- Problem
- 2 Description of the method
 - Definitions and main results
 - The forward-backward principle
- 3 Waiting time distributions
 - Definitions and main results
 - An example
- 4 Applications to Scan Statistics
 - Model
 - Numerical example

Conclusions

Outline

Description of the method Definitions and main results • The forward-backward principle Definitions and main results An example

- Model
- Numerical example

< ∃ ►

Compute the exact distribution of runs and patterns in a sequence of multi-state trial outcomes generated by an i.i.d. or Markov source.

Different approaches

- Traditional approach: combinatorial methods
 Combinatorial come (Matrix 1986 and Human 1986)
- Markov Chain Imbedding Technique (Fu and Koutras 1994)
 - o iii.d. case
 - Markov chain case

Compute the exact distribution of runs and patterns in a sequence of multi-state trial outcomes generated by an i.i.d. or Markov source.

Different approaches

- Traditional approach: combinatorial methods
 i.i.d. case (Makri 1986 and Hirano 1986)
- O Markov Chain Imbedding Technique (Fu and Koutras 1994)
 - i.i.d. case
 - Markov chain case

SPSR 2011

4 / 34

Compute the exact distribution of runs and patterns in a sequence of multi-state trial outcomes generated by an i.i.d. or Markov source.

Different approaches

- Traditional approach: combinatorial methods
 - i.i.d. case (Makri 1986 and Hirano 1986)
- Omega Markov Chain Imbedding Technique (Fu and Koutras 1994)
 - i.i.d. case
 - Markov chain case

A. Amărioarei (Laboratoire P. Painlevé)

SPSR 2011

4 / 34

Compute the exact distribution of runs and patterns in a sequence of multi-state trial outcomes generated by an i.i.d. or Markov source.

Different approaches

- Traditional approach: combinatorial methods
 - i.i.d. case (Makri 1986 and Hirano 1986)
- Ø Markov Chain Imbedding Technique (Fu and Koutras 1994)
 - i.i.d. case
 - Markov chain case

A. Amărioarei (Laboratoire P. Painlevé)

SPSR 2011

4 / 34

Compute the exact distribution of runs and patterns in a sequence of multi-state trial outcomes generated by an i.i.d. or Markov source.

Different approaches

- Traditional approach: combinatorial methods
 - i.i.d. case (Makri 1986 and Hirano 1986)
- Ø Markov Chain Imbedding Technique (Fu and Koutras 1994)
 - i.i.d. case
 - Markov chain case

Compute the exact distribution of runs and patterns in a sequence of multi-state trial outcomes generated by an i.i.d. or Markov source.

Different approaches

- Traditional approach: combinatorial methods
 - i.i.d. case (Makri 1986 and Hirano 1986)
- Ø Markov Chain Imbedding Technique (Fu and Koutras 1994)
 - i.i.d. case
 - Markov chain case

Compute the exact distribution of runs and patterns in a sequence of multi-state trial outcomes generated by an i.i.d. or Markov source.

Different approaches

- Traditional approach: combinatorial methods
 - i.i.d. case (Makri 1986 and Hirano 1986)
- Ø Markov Chain Imbedding Technique (Fu and Koutras 1994)
 - i.i.d. case
 - Markov chain case

Outline

Description of the method Definitions and main results

- The forward-backward principle
- 3 Waiting time distributions
 - Definitions and main results
 - An example
- Applications to Scan Statistics
 Model
 - Numerical example

Conclusions

• Λ is a simple pattern if $\Lambda = b_{i_1}b_{i_2}\dots b_{i_k}$ where $b_{i_j} \in S$ for all $j = \overline{1,k}$

- Λ_1 and Λ_2 are *distinct* if neither $\Lambda_1 \subset \Lambda_2$ nor $\Lambda_2 \subset \Lambda_1$
- \bullet the union $\Lambda_1\cup\Lambda_2$ denote the occurrence of either Λ_1 or Λ_2
- Λ is a *compound pattern* if it can be written as the union of simple distinct patterns
- X_n(Λ) denote the number of occurrences of the pattern Λ in the sequence X₁, X₂,..., X_n using both *overlapping* and *non-overlapping* counting scheme

Example

- X₂₀(Λ) = 2 under non-overlapping scheme
- $X_{20}(\Lambda) = 4$ under overlapping scheme

- Λ is a simple pattern if $\Lambda = b_{i_1}b_{i_2}\dots b_{i_k}$ where $b_{i_j} \in S$ for all $j = \overline{1,k}$
- Λ_1 and Λ_2 are distinct if neither $\Lambda_1\subset\Lambda_2$ nor $\Lambda_2\subset\Lambda_1$
- \bullet the union $\Lambda_1\cup\Lambda_2$ denote the occurrence of either Λ_1 or Λ_2
- Λ is a *compound pattern* if it can be written as the union of simple distinct patterns
- X_n(Λ) denote the number of occurrences of the pattern Λ in the sequence X₁, X₂,..., X_n using both overlapping and non-overlapping counting scheme

Example

- X₂₀(Λ) = 2 under non-overlapping scheme
- $X_{20}(\Lambda) = 4$ under overlapping scheme

- Λ is a simple pattern if $\Lambda = b_{i_1}b_{i_2}\dots b_{i_k}$ where $b_{i_j} \in \mathcal{S}$ for all $j = \overline{1,k}$
- Λ_1 and Λ_2 are *distinct* if neither $\Lambda_1 \subset \Lambda_2$ nor $\Lambda_2 \subset \Lambda_1$
- \bullet the union $\Lambda_1\cup\Lambda_2$ denote the occurrence of either Λ_1 or Λ_2
- Λ is a *compound pattern* if it can be written as the union of simple distinct patterns
- X_n(Λ) denote the number of occurrences of the pattern Λ in the sequence X₁, X₂,..., X_n using both overlapping and non-overlapping counting scheme

Example

- X₂₀(Λ) = 2 under non-overlapping scheme
- $X_{20}(\Lambda) = 4$ under overlapping scheme

- Λ is a simple pattern if $\Lambda = b_{i_1}b_{i_2}\dots b_{i_k}$ where $b_{i_j} \in \mathcal{S}$ for all $j = \overline{1,k}$
- Λ_1 and Λ_2 are *distinct* if neither $\Lambda_1 \subset \Lambda_2$ nor $\Lambda_2 \subset \Lambda_1$
- \bullet the union $\Lambda_1\cup\Lambda_2$ denote the occurrence of either Λ_1 or Λ_2
- Λ is a *compound pattern* if it can be written as the union of simple distinct patterns
- X_n(Λ) denote the number of occurrences of the pattern Λ in the sequence X₁, X₂,..., X_n using both overlapping and non-overlapping counting scheme

Example

- $X_{20}(\Lambda) = 2$ under non-overlapping scheme
- $X_{20}(\Lambda) = 4$ under overlapping scheme

- Λ is a simple pattern if $\Lambda = b_{i_1}b_{i_2}\dots b_{i_k}$ where $b_{i_j} \in \mathcal{S}$ for all $j = \overline{1,k}$
- Λ_1 and Λ_2 are *distinct* if neither $\Lambda_1 \subset \Lambda_2$ nor $\Lambda_2 \subset \Lambda_1$
- \bullet the union $\Lambda_1\cup\Lambda_2$ denote the occurrence of either Λ_1 or Λ_2
- Λ is a *compound pattern* if it can be written as the union of simple distinct patterns
- $X_n(\Lambda)$ denote the number of occurrences of the pattern Λ in the sequence X_1, X_2, \ldots, X_n using both *overlapping* and *non-overlapping* counting scheme

Example

- $X_{20}(\Lambda) = 2$ under non-overlapping scheme
- $X_{20}(\Lambda) = 4$ under overlapping scheme

- Λ is a simple pattern if $\Lambda = b_{i_1}b_{i_2}\dots b_{i_k}$ where $b_{i_j} \in \mathcal{S}$ for all $j = \overline{1,k}$
- Λ_1 and Λ_2 are *distinct* if neither $\Lambda_1 \subset \Lambda_2$ nor $\Lambda_2 \subset \Lambda_1$
- \bullet the union $\Lambda_1\cup\Lambda_2$ denote the occurrence of either Λ_1 or Λ_2
- Λ is a *compound pattern* if it can be written as the union of simple distinct patterns
- $X_n(\Lambda)$ denote the number of occurrences of the pattern Λ in the sequence X_1, X_2, \ldots, X_n using both *overlapping* and *non-overlapping* counting scheme

Example

- X₂₀(Λ) = 2 under non-overlapping scheme
- X₂₀(Λ) = 4 under overlapping scheme

- Λ is a simple pattern if $\Lambda = b_{i_1}b_{i_2}\dots b_{i_k}$ where $b_{i_j} \in \mathcal{S}$ for all $j = \overline{1,k}$
- Λ_1 and Λ_2 are *distinct* if neither $\Lambda_1 \subset \Lambda_2$ nor $\Lambda_2 \subset \Lambda_1$
- \bullet the union $\Lambda_1\cup\Lambda_2$ denote the occurrence of either Λ_1 or Λ_2
- Λ is a *compound pattern* if it can be written as the union of simple distinct patterns
- $X_n(\Lambda)$ denote the number of occurrences of the pattern Λ in the sequence X_1, X_2, \ldots, X_n using both *overlapping* and *non-overlapping* counting scheme

Example

- X₂₀(Λ) = 2 under non-overlapping scheme
- X₂₀(Λ) = 4 under overlapping scheme

- Λ is a simple pattern if $\Lambda = b_{i_1}b_{i_2}\dots b_{i_k}$ where $b_{i_j} \in \mathcal{S}$ for all $j = \overline{1,k}$
- Λ_1 and Λ_2 are *distinct* if neither $\Lambda_1 \subset \Lambda_2$ nor $\Lambda_2 \subset \Lambda_1$
- \bullet the union $\Lambda_1\cup\Lambda_2$ denote the occurrence of either Λ_1 or Λ_2
- Λ is a *compound pattern* if it can be written as the union of simple distinct patterns
- $X_n(\Lambda)$ denote the number of occurrences of the pattern Λ in the sequence X_1, X_2, \ldots, X_n using both *overlapping* and *non-overlapping* counting scheme

Example

- X₂₀(Λ) = 2 under non-overlapping scheme
- $X_{20}(\Lambda) = 4$ under overlapping scheme

Given a compound pattern Λ we say that $X_n(\Lambda)$ is finite Markov chain imbeddable if:

- there exists a finite Markov chain {Y_t | t = 0, 1, ..., n} defined on a finite state space Ω = {a₁, a₂,..., a_s} with initial probability vector ξ₀
- there exists a finite partition $\{C_x | x = 0, 1, \dots, l_n\}$ on the state space

• for every $x = 0, 1, \ldots, l_n$ we have

$$\mathbb{P}(X_n(\Lambda) = x) = \mathbb{P}(Y_n \in C_x | \boldsymbol{\xi_0})$$

A. Amărioarei (Laboratoire P. Painlevé)

SPSR 2011 7 / 34

Given a compound pattern Λ we say that $X_n(\Lambda)$ is finite Markov chain imbeddable if:

- there exists a finite Markov chain $\{Y_t | t = 0, 1, ..., n\}$ defined on a finite state space $\Omega = \{a_1, a_2, ..., a_s\}$ with initial probability vector ξ_0
- there exists a finite partition $\{C_x | x = 0, 1, \dots, l_n\}$ on the state space

• for every $x = 0, 1, \ldots, l_n$ we have

$$\mathbb{P}(X_n(\Lambda) = x) = \mathbb{P}(Y_n \in C_x | \boldsymbol{\xi_0})$$

A. Amărioarei (Laboratoire P. Painlevé)

SPSR 2011 7 / 34

Given a compound pattern Λ we say that $X_n(\Lambda)$ is finite Markov chain imbeddable if:

- there exists a finite Markov chain $\{Y_t | t = 0, 1, ..., n\}$ defined on a finite state space $\Omega = \{a_1, a_2, ..., a_s\}$ with initial probability vector ξ_0
- ullet there exists a finite partition $\{\mathit{C}_x|x=0,1,\ldots,\mathit{I}_n\}$ on the state space

• for every $x = 0, 1, \ldots, l_n$ we have

 $\mathbb{P}(X_n(\Lambda) = x) = \mathbb{P}(Y_n \in C_x | \boldsymbol{\xi_0})$

A. Amărioarei (Laboratoire P. Painlevé)

SPSR 2011 7 / 34

Given a compound pattern Λ we say that $X_n(\Lambda)$ is finite Markov chain imbeddable if:

- there exists a finite Markov chain $\{Y_t | t = 0, 1, ..., n\}$ defined on a finite state space $\Omega = \{a_1, a_2, ..., a_s\}$ with initial probability vector ξ_0
- there exists a finite partition $\{C_x|x=0,1,\ldots,I_n\}$ on the state space

• for every
$$x = 0, 1, \ldots, l_n$$
 we have

$$\mathbb{P}(X_n(\Lambda)=x)=\mathbb{P}(Y_n\in C_x|\boldsymbol{\xi_0})$$

A. Amărioarei (Laboratoire P. Painlevé)

SPSR 2011 7 / 34

If $X_n(\Lambda)$ is finite Markov chain imbeddable, then

$$\mathbb{P}(X_n(\Lambda) = x) = \boldsymbol{\xi}_{\boldsymbol{0}} \boldsymbol{M}^n \boldsymbol{U}^{\mathsf{T}}(C_x)$$

- $\boldsymbol{\xi_0} = \mathbb{P}(Y_0 = a_1, Y_0 = a_2, \dots, Y_0 = a_s)$ is the initial probability vector
- **M** is the transition probability matrix of $(Y_t)_{t=\overline{0,n}}$
- U(C_x) = ∑_{aj∈C_x} e_j and e_j = (0,...,1,...,0)_{1×s} is an unit vector corresponding to a_j

The imbedded chain may be

homogeneous

• non-homogeneous and $M^n
ightarrow \prod_{t=1}^n M_t$

If $X_n(\Lambda)$ is finite Markov chain imbeddable, then

$$\mathbb{P}(X_n(\Lambda) = x) = \boldsymbol{\xi}_{\boldsymbol{0}} \boldsymbol{M}^n \boldsymbol{U}^{\mathsf{T}}(C_x)$$

•
$$\xi_0 = \mathbb{P}(Y_0 = a_1, Y_0 = a_2, \dots, Y_0 = a_s)$$
 is the initial probability vector

• **M** is the transition probability matrix of $(Y_t)_{t=\overline{0,n}}$

U(C_x) = ∑_{aj∈C_x} e_j and e_j = (0,...,1,...,0)_{1×s} is an unit vector corresponding to a_j

The imbedded chain may be

homogeneous

• non-homogeneous and $M^n
ightarrow \prod_{t=1}^n M_t$

If $X_n(\Lambda)$ is finite Markov chain imbeddable, then

$$\mathbb{P}(X_n(\Lambda) = x) = \boldsymbol{\xi}_{\boldsymbol{0}} \boldsymbol{M}^n \boldsymbol{U}^{\mathsf{T}}(C_x)$$

- $\xi_0 = \mathbb{P}(Y_0 = a_1, Y_0 = a_2, \dots, Y_0 = a_s)$ is the initial probability vector
- **M** is the transition probability matrix of $(Y_t)_{t=\overline{0,n}}$
- U(C_x) = ∑_{aj∈C_x} e_j and e_j = (0,...,1,...,0)_{1×s} is an unit vector corresponding to a_j

The imbedded chain may be

homogeneous

• non-homogeneous and $M^n
ightarrow \prod_{t=1}^n M_t$

• • = • • =

If $X_n(\Lambda)$ is finite Markov chain imbeddable, then

$$\mathbb{P}(X_n(\Lambda) = x) = \boldsymbol{\xi}_{\boldsymbol{0}} \boldsymbol{M}^n \boldsymbol{U}^{\mathsf{T}}(C_x)$$

- $\xi_0 = \mathbb{P}(Y_0 = a_1, Y_0 = a_2, \dots, Y_0 = a_s)$ is the initial probability vector
- **M** is the transition probability matrix of $(Y_t)_{t=\overline{0,n}}$
- U(C_x) = ∑_{aj∈C_x} e_j and e_j = (0,...,1,...,0)_{1×s} is an unit vector corresponding to a_j

The imbedded chain may be

homogeneous

• non-homogeneous and $M^n \to \prod_{t=1}^n M_t$

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

If $X_n(\Lambda)$ is finite Markov chain imbeddable, then

$$\mathbb{P}(X_n(\Lambda) = x) = \boldsymbol{\xi}_{\boldsymbol{0}} \boldsymbol{M}^n \boldsymbol{U}^{\mathsf{T}}(C_x)$$

- $\xi_0 = \mathbb{P}(Y_0 = a_1, Y_0 = a_2, \dots, Y_0 = a_s)$ is the initial probability vector
- **M** is the transition probability matrix of $(Y_t)_{t=\overline{0,n}}$
- U(C_x) = ∑_{aj∈C_x} e_j and e_j = (0,...,1,...,0)_{1×s} is an unit vector corresponding to a_j

The imbedded chain may be

homogeneous

• non-homogeneous and $M^n \to \prod_{t=1}^n M_t$

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

If $X_n(\Lambda)$ is finite Markov chain imbeddable, then

$$\mathbb{P}(X_n(\Lambda) = x) = \xi_0 M^n U^{\mathsf{T}}(C_x)$$

- $\xi_0 = \mathbb{P}(Y_0 = a_1, Y_0 = a_2, \dots, Y_0 = a_s)$ is the initial probability vector
- **M** is the transition probability matrix of $(Y_t)_{t=\overline{0,n}}$
- U(C_x) = ∑_{aj∈C_x} e_j and e_j = (0,...,1,...,0)_{1×s} is an unit vector corresponding to a_j

The imbedded chain may be

homogeneous

• non-homogeneous and $oldsymbol{M}^n o \prod_{t=1}^n oldsymbol{M}_t$

Outline

2 Description of the method

- Definitions and main results
- The forward-backward principle
- Waiting time distributions
 - Definitions and main results
 - An example
- Applications to Scan Statistics
 - Model
 - Numerical example

Conclusions

< E

Question:

Can we always imbed a random variable associated with a specified pattern into a Markov chain?

...one way is by using *forward-backward* procedure developed by Fu (1996) based on

- a proper understanding of the structure of the specified pattern
- the counting procedure applied throughout the sequence

Question:

Can we always imbed a random variable associated with a specified pattern into a Markov chain?

...one way is by using *forward-backward* procedure developed by Fu (1996) based on

- a proper understanding of the structure of the specified pattern
- the counting procedure applied throughout the sequence

Question:

Can we always imbed a random variable associated with a specified pattern into a Markov chain?

...one way is by using *forward-backward* procedure developed by Fu (1996) based on

- a proper understanding of the structure of the specified pattern
- the counting procedure applied throughout the sequence

Non-overlap counting

Given

•
$$(X_t)_{t=\overline{1,n}}$$
 - Markov dependent

$$\boldsymbol{A} = \left(\begin{array}{rrrr} p_{11} & p_{12} & p_{13} \\ p_{21} & p_{22} & p_{23} \\ p_{31} & p_{32} & p_{33} \end{array}\right)$$

• the alphabet
$$\mathcal{S} = \{b_1, b_2, b_3\}$$

• the simple pattern $\Lambda = b_1 b_1 b_1 b_2$

A. Amărioarei (Laboratoire P. Painlevé)

■ ◆ ■ ◆ ■ ◆ への SPSR 2011 11 / 34

< □ > < □ > < □ > < □ > < □ > < □ >

Non-overlap counting

Given

•
$$(X_t)_{t=\overline{1,n}}$$
 - Markov dependent

$$\boldsymbol{A} = \left(\begin{array}{rrrr} p_{11} & p_{12} & p_{13} \\ p_{21} & p_{22} & p_{23} \\ p_{31} & p_{32} & p_{33} \end{array}\right)$$

$$ullet$$
 the alphabet $\mathcal{S}=\{b_1,b_2,b_3\}$

• the simple pattern $\Lambda = b_1 b_1 b_1 b_2$

A. Amărioarei (Laboratoire P. Painlevé)

■ ◆ ■ ◆ ■ ◆ への SPSR 2011 11 / 34

< □ > < □ > < □ > < □ > < □ > < □ >

Non-overlap counting

Given

•
$$(X_t)_{t=\overline{1,n}}$$
 - Markov dependent

$$\boldsymbol{A} = \left(\begin{array}{ccc} p_{11} & p_{12} & p_{13} \\ p_{21} & p_{22} & p_{23} \\ p_{31} & p_{32} & p_{33} \end{array}\right)$$

$$ullet$$
 the alphabet $\mathcal{S}=\{b_1,b_2,b_3\}$

• the simple pattern $\Lambda = b_1 b_1 b_1 b_2$

∃ →
We will give the method in five steps:

Step1 define $S(\Lambda) = \{b_1, b_1b_1, b_1b_1b_1, b_1b_1b_1b_2\}$ the set of all sequential sub-patterns and

$$\mathcal{E} = \mathcal{S} \cup \mathcal{S}(\Lambda) = \{b_1, b_2, b_3, b_1b_1, b_1b_1b_1, b_1b_1b_2\}$$

Step2 define the state space

 $\Omega = \{(u, v) | u = 0, 1, \dots, [n/4], v \in \mathcal{E}\} \cup \{\emptyset\} \setminus \{(0, b_1 b_1 b_2)\}$

A. Amărioarei (Laboratoire P. Painlevé)

We will give the method in five steps:

Step1 define $S(\Lambda) = \{b_1, b_1b_1, b_1b_1b_1, b_1b_1b_1b_2\}$ the set of all sequential sub-patterns and

$$\mathcal{E} = \mathcal{S} \cup \mathcal{S}(\Lambda) = \{b_1, b_2, b_3, b_1b_1, b_1b_1b_1, b_1b_1b_2\}$$

Step2 define the state space

$$\Omega = \{(u, v) | u = 0, 1, \dots, [n/4], v \in \mathcal{E}\} \cup \{\emptyset\} \setminus \{(0, b_1 b_1 b_2)\}$$

A. Amărioarei (Laboratoire P. Painlevé)

Step3 define the Markov chain

$$Y_t = (X_t(\Lambda), E_t), t = 1, 2, \dots, n$$

such that $Y_t(\omega) = (u, v) \in \Omega$, where

 $u = X_t(\Lambda)(\omega)$ - the total number of non-overlapping occurrences of the pattern Λ in the first *t* trials, counting *forward* from the first to the *t*-th trial

 $v = E_t(\omega)$ - the longest ending block in ${\cal E}$, counting backward from X_t .

Step3 define the Markov chain

$$Y_t = (X_t(\Lambda), E_t), t = 1, 2, \dots, n$$

such that $Y_t(\omega) = (u, v) \in \Omega$, where

 $u = X_t(\Lambda)(\omega)$ - the total number of non-overlapping occurrences of the pattern Λ in the first *t* trials, counting *forward* from the first to the *t*-th trial

 $v = E_t(\omega)$ - the longest ending block in \mathcal{E} , counting backward from X_t .

A. Amărioarei (Laboratoire P. Painlevé)

Step3 define the Markov chain

$$Y_t = (X_t(\Lambda), E_t), \ t = 1, 2, \dots, n$$

such that $Y_t(\omega) = (u, v) \in \Omega$, where

 $u = X_t(\Lambda)(\omega)$ - the total number of non-overlapping occurrences of the pattern Λ in the first *t* trials, counting *forward* from the first to the *t*-th trial

 $v = E_t(\omega)$ - the longest ending block in \mathcal{E} , counting backward from X_t .

Considering the realization:

$$\omega = (b_2 b_3 b_1 b_1 b_2 b_1 b_1 b_1 b_2 b_1 b_3 b_1)$$

$Y_1(\omega) = (0, b_2)$	$Y_5(\omega) = (0, b_2)$	$Y_{9}(\omega) = (1, b_{1}b_{1}b_{1}b_{2})$
$Y_2(\omega) = (0, b_3)$	$Y_6(\omega) = (0, b_1)$	$Y_{10}(\omega) = (1, b_1)$
$Y_3(\omega) = (0, b_1)$	$Y_7(\omega) = (0, b_1 b_1)$	$Y_{11}(\omega) = (1, b_3)$
$Y_4(\omega) = (0, b_1b_1)$	$Y_8(\omega) = (0, b_1b_1b_1)$	$Y_{12}(\omega) = (1, b_1)$

A. Amărioarei (Laboratoire P. Painlevé)

MCIT and applications

SPSR 2011 14 / 34

3

イロト イポト イヨト イヨト

$$(0, b_1b_1b_1)
ightarrow \left\{ egin{array}{ll} (0, b_1b_1b_1), & X_9 = b_1, ext{ probability is } p_{11} \ (1, b_1b_1b_1b_2), & X_9 = b_2, ext{ probability is } p_{12} \ (0, b_3), & X_9 = b_3, ext{ probability is } p_{13} \end{array}
ight.$$

● Ø - the dummy state

• $\mathbb{P}(Y_1 = b_i | Y_0 = \emptyset) = p_i$ with i = 1, 2, 3 the initial distribution

Step5 the partition

$$C_{x} = \begin{cases} C_{\emptyset} = \{\emptyset\} \\ C_{0} = \{(0, b_{1}), (0, b_{2}), (0, b_{3}), (0, b_{1}b_{1}), (0, b_{1}b_{1}b_{1})\} \\ C_{z} = \{(z, v) | v \in \mathcal{E}, z = 1, \dots, [n/4]\}. \end{cases}$$

A. Amărioarei (Laboratoire P. Painlevé)

$$(0, b_1b_1b_1)
ightarrow \left\{ egin{array}{ll} (0, b_1b_1b_1), & X_9 = b_1, ext{ probability is } p_{11} \ (1, b_1b_1b_1b_2), & X_9 = b_2, ext{ probability is } p_{12} \ (0, b_3), & X_9 = b_3, ext{ probability is } p_{13} \end{array}
ight.$$

● Ø - the dummy state

• $\mathbb{P}(Y_1 = b_i | Y_0 = \emptyset) = p_i$ with i = 1, 2, 3 the initial distribution

Step5 the partition

$$C_{x} = \begin{cases} C_{\emptyset} = \{\emptyset\} \\ C_{0} = \{(0, b_{1}), (0, b_{2}), (0, b_{3}), (0, b_{1}b_{1}), (0, b_{1}b_{1}b_{1})\} \\ C_{z} = \{(z, v) | v \in \mathcal{E}, z = 1, \dots, [n/4]\}. \end{cases}$$

A. Amărioarei (Laboratoire P. Painlevé)

SPSR 2011 15 / 34

$$(0, b_1 b_1 b_1) \rightarrow \begin{cases} (0, b_1 b_1 b_1), & X_9 = b_1, \text{ probability is } p_{11} \\ (1, b_1 b_1 b_1 b_2), & X_9 = b_2, \text{ probability is } p_{12} \\ (0, b_3), & X_9 = b_3, \text{ probability is } p_{13} \end{cases}$$

● Ø - the dummy state

• $\mathbb{P}(Y_1 = b_i | Y_0 = \emptyset) = p_i$ with i = 1, 2, 3 the initial distribution

Step5 the partition

$$C_{x} = \begin{cases} C_{\emptyset} = \{\emptyset\} \\ C_{0} = \{(0, b_{1}), (0, b_{2}), (0, b_{3}), (0, b_{1}b_{1}), (0, b_{1}b_{1}b_{1})\} \\ C_{z} = \{(z, v) | v \in \mathcal{E}, z = 1, \dots, [n/4]\}. \end{cases}$$

A. Amărioarei (Laboratoire P. Painlevé)

$$(0, b_1 b_1 b_1) \rightarrow \begin{cases} (0, b_1 b_1 b_1), & X_9 = b_1, \text{ probability is } p_{11} \\ (1, b_1 b_1 b_1 b_2), & X_9 = b_2, \text{ probability is } p_{12} \\ (0, b_3), & X_9 = b_3, \text{ probability is } p_{13} \end{cases}$$

● Ø - the dummy state

• $\mathbb{P}(Y_1 = b_i | Y_0 = \emptyset) = p_i$ with i = 1, 2, 3 the initial distribution

Step5 the partition

$$C_{x} = \begin{cases} C_{\emptyset} = \{\emptyset\} \\ C_{0} = \{(0, b_{1}), (0, b_{2}), (0, b_{3}), (0, b_{1}b_{1}), (0, b_{1}b_{1}b_{1})\} \\ C_{z} = \{(z, v) | v \in \mathcal{E}, z = 1, \dots, [n/4]\}. \end{cases}$$

A. Amărioarei (Laboratoire P. Painlevé)

The transition matrix (n = 5) **M**:

Ø	a_1	a 2	a ₃	<i>a</i> 4	a_5	a_6	a ₇	a_8	a g	a_{10}	a_{11}	
(0	p_1	p 2	p 3	0	0	0	0	0	0	0	0)
0	0	p_{12}	p_{13}	p_{11}	0	0	0	0	0	0	0	
0	p_{21}	p 22	<i>p</i> ₂₃	0	0	0	0	0	0	0	0	
0	p_{31}	<i>p</i> ₃₂	<i>p</i> ₃₃	0	0	0	0	0	0	0	0	
0	0	p_{12}	p_{13}	0	p_{11}	0	0	0	0	0	0	
0	0	0	p_{13}	0	p_{11}	p_{12}	0	0	0	0	0	
0	0	0	0	0	0	0	p_{21}	p 22	<i>p</i> ₂₃	0	0	
0	0	0	0	0	0	0	0	p_{12}	p_{13}	p_{11}	0	
0	0	0	0	0	0	0	p_{21}	<i>p</i> ₂₂	<i>p</i> ₂₃	0	0	
0	0	0	0	0	0	0	p_{31}	<i>p</i> ₃₂	p ₃₃	0	0	
0	0	0	0	0	0	0	0	p_{12}	p_{13}	0	p_{11}	
0/	0	0	0	0	0	0	0	0	0	0	1	

SPSR 2011

표 문 표

Image: A matching of the second se

16 / 34

Outline

- Introduction
 - Problem
- 2 Description of the method
 - Definitions and main results
 - The forward-backward principle
- Waiting time distributions
 Definitions and main results
 - An example
 - Applications to Scan Statistics
 - Model
 - Numerical example

Conclusions

< ∃ ►

• the waiting time for a simple pattern $\Lambda = b_{i_1} b_{i_2} \dots b_{i_k}$

$$W(\Lambda) = \inf\{n|X_{n-k+1} = b_{i_1}, \ldots, X_n = b_{i_k}\}$$

- the waiting time of a compound pattern Λ = ∪^l_{i=1}Λ_i
 W(Λ) = minimum number of trials required to observe the occurrence of one of the simple patterns Λ₁,...,Λ_l
- the waiting time of the r-th occurrence of the pattern Λ
 W(r, Λ) = minimum number of trials required to observe the r-th occurrence of the pattern Λ

The duality property:

$$\mathbb{P}(X_n(\Lambda) < r) = \mathbb{P}(W(r,\Lambda) > n).$$

A. Amărioarei (Laboratoire P. Painlevé)

SPSR 2011 18 / 34

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• the waiting time for a simple pattern $\Lambda = b_{i_1} b_{i_2} \dots b_{i_k}$

$$W(\Lambda) = \inf\{n|X_{n-k+1} = b_{i_1}, \ldots, X_n = b_{i_k}\}$$

- the waiting time of a compound pattern Λ = ∪^l_{i=1}Λ_i
 W(Λ) = minimum number of trials required to observe the occurrence of one of the simple patterns Λ₁,...,Λ_l
- the waiting time of the *r*-th occurrence of the pattern Λ $W(r, \Lambda) =$ minimum number of trials required to observe the *r*-th occurrence of the pattern Λ

The duality property:

$$\mathbb{P}(X_n(\Lambda) < r) = \mathbb{P}(W(r,\Lambda) > n).$$

A. Amărioarei (Laboratoire P. Painlevé)

SPSR 2011 18 / 34

▲ □ ► ▲ □ ► ▲

ullet the waiting time for a simple pattern $\Lambda = b_{i_1}b_{i_2}\dots b_{i_k}$

$$W(\Lambda) = \inf\{n|X_{n-k+1} = b_{i_1}, \ldots, X_n = b_{i_k}\}$$

- the waiting time of a compound pattern $\Lambda = \bigcup_{i=1}^{l} \Lambda_i$ $W(\Lambda) =$ minimum number of trials required to observe the occurrence of one of the simple patterns $\Lambda_1, \ldots, \Lambda_l$
- the waiting time of the *r*-th occurrence of the pattern Λ $W(r, \Lambda) =$ minimum number of trials required to observe the *r*-th occurrence of the pattern Λ

The duality property:

$$\mathbb{P}(X_n(\Lambda) < r) = \mathbb{P}(W(r,\Lambda) > n).$$

A. Amărioarei (Laboratoire P. Painlevé)

SPSR 2011 18 / 34

A (10) F (10)

ullet the waiting time for a simple pattern $\Lambda = b_{i_1}b_{i_2}\dots b_{i_k}$

$$W(\Lambda) = \inf\{n|X_{n-k+1} = b_{i_1}, \dots, X_n = b_{i_k}\}$$

- the waiting time of a compound pattern Λ = ∪^l_{i=1}Λ_i
 W(Λ) = minimum number of trials required to observe the occurrence of one of the simple patterns Λ₁,...,Λ_l
- the waiting time of the *r*-th occurrence of the pattern Λ $W(r, \Lambda) =$ minimum number of trials required to observe the *r*-th occurrence of the pattern Λ

The duality property:

$$\mathbb{P}(X_n(\Lambda) < r) = \mathbb{P}(W(r,\Lambda) > n).$$

A. Amărioarei (Laboratoire P. Painlevé)

ullet the waiting time for a simple pattern $\Lambda = b_{i_1}b_{i_2}\dots b_{i_k}$

$$W(\Lambda) = \inf\{n|X_{n-k+1} = b_{i_1}, \dots, X_n = b_{i_k}\}$$

- the waiting time of a compound pattern Λ = ∪^l_{i=1}Λ_i
 W(Λ) = minimum number of trials required to observe the occurrence of one of the simple patterns Λ₁,...,Λ_l
- the waiting time of the *r*-th occurrence of the pattern Λ $W(r, \Lambda) =$ minimum number of trials required to observe the *r*-th occurrence of the pattern Λ

The duality property:

$$\mathbb{P}(X_n(\Lambda) < r) = \mathbb{P}(W(r,\Lambda) > n).$$

ullet the Markov chain $(X_t)_{\overline{1,\infty}}$ over the alphabet $\mathcal{S}=\{b_1,\ldots,b_m\}$

• compound pattern $\Lambda = \cup_{i=1}^{l} \Lambda_i$

we have using the forward-backward principle:

• the state space

$$\Omega = \{\emptyset\} \cup S \cup_{i=1}^{l} S(\Lambda_i)$$

- $A = \{\alpha_1, \ldots, \alpha_l\}$ the set of absorbing states corresponding to the simple pattern Λ_i
- for $Y_{t-1} = u \in \Omega \setminus A \setminus \{\emptyset\}$ and $X_t = z \in S$ we define the longest ending block

$$v = \langle u, z \rangle_{\Omega}$$

and the set

$$[u:S] = \{v | v \in \Omega, v = \langle u, z \rangle_{\Omega}, z \in S\}$$

A. Amărioarei (Laboratoire P. Painlevé)

< □ > < □ > < □ > < □ > < □ > < □ >

the Markov chain (X_t)_{1,∞} over the alphabet S = {b₁,..., b_m}
compound pattern Λ = ∪^l_{i=1}Λ_i

we have using the *forward-backward* principle:

• the state space

$$\Omega = \{\emptyset\} \cup S \cup_{i=1}^{l} S(\Lambda_i)$$

- $A = \{\alpha_1, \ldots, \alpha_l\}$ the set of absorbing states corresponding to the simple pattern Λ_i
- for $Y_{t-1} = u \in \Omega \setminus A \setminus \{\emptyset\}$ and $X_t = z \in S$ we define the longest ending block

$$v = \langle u, z \rangle_{\Omega}$$

and the set

$$[u:S] = \{v | v \in \Omega, v = \langle u, z \rangle_{\Omega}, z \in S\}$$

A. Amărioarei (Laboratoire P. Painlevé)

SPSR 2011 19 / 34

< □ > < □ > < □ > < □ > < □ > < □ >

- the Markov chain $(X_t)_{\overline{1,\infty}}$ over the alphabet $\mathcal{S}=\{b_1,\ldots,b_m\}$
- compound pattern $\Lambda = \cup_{i=1}^{l} \Lambda_i$

we have using the *forward-backward* principle:

the state space

$$\Omega = \{\emptyset\} \cup \mathcal{S} \cup_{i=1}^{l} \mathcal{S}(\Lambda_i)$$

- $A = \{\alpha_1, \ldots, \alpha_l\}$ the set of absorbing states corresponding to the simple pattern Λ_i
- for $Y_{t-1} = u \in \Omega \setminus A \setminus \{\emptyset\}$ and $X_t = z \in S$ we define the longest ending block

$$v = \langle u, z \rangle_{\Omega}$$

and the set

$$[u:S] = \{v | v \in \Omega, v = \langle u, z \rangle_{\Omega}, z \in S\}$$

A. Amărioarei (Laboratoire P. Painlevé)

■ ◆ ■ ◆ ■ ◆ への SPSR 2011 19 / 34

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- the Markov chain $(X_t)_{\overline{1,\infty}}$ over the alphabet $\mathcal{S}=\{b_1,\ldots,b_m\}$
- compound pattern $\Lambda = \cup_{i=1}^{l} \Lambda_i$

we have using the *forward-backward* principle:

the state space

$$\Omega = \{\emptyset\} \cup \mathcal{S} \cup_{i=1}^{l} \mathcal{S}(\Lambda_i)$$

- $A = \{\alpha_1, \dots, \alpha_l\}$ the set of absorbing states corresponding to the simple pattern Λ_i
- for $Y_{t-1} = u \in \Omega \setminus A \setminus \{\emptyset\}$ and $X_t = z \in S$ we define the longest ending block

$$v = \langle u, z \rangle_{\Omega}$$

and the set

$$[u:S] = \{v | v \in \Omega, v = \langle u, z \rangle_{\Omega}, z \in S\}$$

A. Amărioarei (Laboratoire P. Painlevé)

SPSR 2011 19 / 34

- the Markov chain $(X_t)_{\overline{1,\infty}}$ over the alphabet $\mathcal{S}=\{b_1,\ldots,b_m\}$
- compound pattern $\Lambda = \cup_{i=1}^{l} \Lambda_i$

we have using the *forward-backward* principle:

the state space

$$\Omega = \{\emptyset\} \cup \mathcal{S} \cup_{i=1}^{l} \mathcal{S}(\Lambda_i)$$

- $A = \{\alpha_1, \dots, \alpha_l\}$ the set of absorbing states corresponding to the simple pattern Λ_i
- for $Y_{t-1} = u \in \Omega \setminus A \setminus \{\emptyset\}$ and $X_t = z \in S$ we define the longest ending block

$$v = \langle u, z \rangle_{\Omega}$$

and the set

$$[u:S] = \{v | v \in \Omega, v = < u, z >_{\Omega}, z \in S\}$$

A. Amărioarei (Laboratoire P. Painlevé)

イロト イポト イヨト イヨト 二日

Theorem

(1) the transition probabilities of the imbedded Markov chain Y_t ,

$$p_{u,v} = \mathbb{P}(Y_t = v | Y_{t-1} = u) = \begin{cases} p_z, & \text{if } u = \emptyset, v = z, z \in S \\ p_{xz}, & \text{if } u \in \Omega \setminus A \setminus \{\emptyset\} \\ v \in [u : S] \text{ and } X_t = z \\ 1, & \text{if } u \in A \text{ and } v = u \\ 0, & \text{otherwise} \end{cases}$$

where x is the last symbol of u and $p_z = \mathbb{P}(Y_1 = z | Y_0 = \emptyset)$

$$M = \begin{pmatrix} N_{(d-l)\times(d-l)} & C \\ O & I \end{pmatrix}_{d\times}$$

(2) given the initial distribution $\xi_0 = (\xi : 0)$

$$\mathbb{P}(W(\Lambda) = n) = \xi N^{n-1} (I - N) \mathbf{1}^{\mathsf{T}}$$

Theorem

1 the transition probabilities of the imbedded Markov chain Y_t,

$$p_{u,v} = \mathbb{P}(Y_t = v | Y_{t-1} = u) = \begin{cases} p_z, & \text{if } u = \emptyset, v = z, z \in \mathcal{S} \\ p_{xz}, & \text{if } u \in \Omega \setminus A \setminus \{\emptyset\} \\ v \in [u : \mathcal{S}] \text{ and } X_t = z \\ 1, & \text{if } u \in A \text{ and } v = u \\ 0, & \text{otherwise} \end{cases}$$

where x is the last symbol of u and $p_z = \mathbb{P}(Y_1 = z | Y_0 = \emptyset)$

$$\boldsymbol{M} = \begin{pmatrix} \boldsymbol{N}_{(d-l)\times(d-l)} & \boldsymbol{C} \\ \boldsymbol{O} & \boldsymbol{I} \end{pmatrix}_{d\times d}$$

(2) given the initial distribution $\xi_0 = (\xi : 0)$

$$\mathbb{P}(W(\Lambda) = n) = \xi N^{n-1} (I - N) \mathbf{1}^{\mathsf{T}}$$

Theorem

1 the transition probabilities of the imbedded Markov chain Y_t,

$$p_{u,v} = \mathbb{P}(Y_t = v | Y_{t-1} = u) = \begin{cases} p_z, & \text{if } u = \emptyset, v = z, z \in \mathcal{S} \\ p_{xz}, & \text{if } u \in \Omega \setminus A \setminus \{\emptyset\} \\ v \in [u : \mathcal{S}] \text{ and } X_t = z \\ 1, & \text{if } u \in A \text{ and } v = u \\ 0, & \text{otherwise} \end{cases}$$

where x is the last symbol of u and $p_z = \mathbb{P}(Y_1 = z | Y_0 = \emptyset)$

$$\boldsymbol{M} = \begin{pmatrix} \boldsymbol{N}_{(d-l)\times(d-l)} & \boldsymbol{C} \\ \boldsymbol{O} & \boldsymbol{I} \end{pmatrix}_{d\times d}$$

2 given the initial distribution $\xi_0 = (\xi : 0)$

$$\mathbb{P}(W(\Lambda) = n) = \boldsymbol{\xi} \boldsymbol{N}^{n-1} (\boldsymbol{I} - \boldsymbol{N}) \boldsymbol{1}^{\mathsf{T}}$$

Waiting time of the *r*-th occurrence

For $W(r, \Lambda)$

the state space

$\Omega^{(r)} = \{ \emptyset \} \cup \Omega_1 \cup \Omega_2 \cup A$

A = {α₁,..., α_l} is the set of all the absorbing states α_j corresponding to the *r*-th occurrence of the pattern Λ_j

۲

$$\Omega_1 = \{(u, v) | u = 0, \dots, r - 1; v \in S \cup S(\Lambda_1) \dots \cup S(\Lambda_l) \setminus A\}, \Omega_2 = \{(u, v) | u = 1, \dots, r - 1; v \in B\}$$

where \mathcal{B} is the collection of the last symbols of Λ_i , i = 1, ..., l (we add some mark to distinguish from \mathcal{S})

A. Amărioarei (Laboratoire P. Painlevé)

(日) (周) (日) (日)

Waiting time of the *r*-th occurrence

For $W(r, \Lambda)$

the state space

$$\Omega^{(r)} = \{\emptyset\} \cup \Omega_1 \cup \Omega_2 \cup A$$

A = {α₁,...,α_l} is the set of all the absorbing states α_j corresponding to the *r*-th occurrence of the pattern Λ_j

$$\Omega_1 = \{(u, v) | u = 0, \dots, r - 1; v \in S \cup S(\Lambda_1) \dots \cup S(\Lambda_l) \setminus A\}, \\ \Omega_2 = \{(u, v) | u = 1, \dots, r - 1; v \in B\}$$

where \mathcal{B} is the collection of the last symbols of Λ_i , i = 1, ..., l (we add some mark to distinguish from \mathcal{S})

A. Amărioarei (Laboratoire P. Painlevé)

(日) (周) (日) (日)

Waiting time of the *r*-th occurrence

For $W(r, \Lambda)$

the state space

$$\Omega^{(r)} = \{\emptyset\} \cup \Omega_1 \cup \Omega_2 \cup A$$

A = {α₁,...,α_l} is the set of all the absorbing states α_j corresponding to the *r*-th occurrence of the pattern Λ_j

۲

$$\begin{aligned} \Omega_1 &= \{(u, v) | u = 0, \dots, r - 1; v \in \mathcal{S} \cup \mathcal{S}(\Lambda_1) \cdots \cup \mathcal{S}(\Lambda_l) \setminus \mathcal{A}\}, \\ \Omega_2 &= \{(u, v) | u = 1, \dots, r - 1; v \in \mathcal{B}\} \end{aligned}$$

where \mathcal{B} is the collection of the last symbols of Λ_i , i = 1, ..., l (we add some mark to distinguish from \mathcal{S})

・ロト ・ 一下 ・ ・ 三 ト ・ 三 ト

Outline

- Introduction
 - Problem
- 2 Description of the method
 - Definitions and main results
 - The forward-backward principle

Waiting time distributions

- Definitions and main results
- An example
- Applications to Scan Statistics
 - Model
 - Numerical example

Conclusions

< ∃ ►

Example

Given,

• the alphabet $\mathcal{S} = \{A, C, G, T\}$

• the Chi motif $\Lambda = GNTGGTGG$ where $N \in S$

• the transition matrix (estimated over Escherichia Coli genome)

A	С	G	T	A	С	G	T
(PAA	РАС	PAG	PAT \	(0.30	0.21	0.22	0.27
PCA	РСС	PCG	Рст	0.23	0.23	0.32	0.22
PGA	PGC	PGG	PGT	0.28	0.29	0.23	0.20
PTA	ртс	РтG	ртт /	(0.19)	0.28	0.23	0.30/

and the stationary distribution

$$\mu = (0.2501, 0.2524, 0.2502, 0.2473)$$

Example

Given,

- the alphabet $S = \{A, C, G, T\}$
- the Chi motif $\Lambda = \mathit{GNTGGTGG}$ where $\mathit{N} \in \mathcal{S}$

• the transition matrix (estimated over Escherichia Coli genome)

A	С	G	T	A	С	G	T
(PAA	РАС	PAG	PAT \	(0.30	0.21	0.22	0.27
PCA	Рсс	РCG	Рст	0.23	0.23	0.32	0.22
PGA	PGC	PGG	PGT	0.28	0.29	0.23	0.20
\ pTA	Ртс	Рт <i>G</i>	ртт /	(0.19)	0.28	0.23	0.30/

and the stationary distribution

$$\mu = (0.2501, 0.2524, 0.2502, 0.2473)$$

A. Amărioarei (Laboratoire P. Painlevé)

MCIT and applications

SPSR 2011 23 / 34

э

< A > < > > <

Example

Given,

- the alphabet $S = \{A, C, G, T\}$
- the Chi motif $\Lambda = \textit{GNTGGTGG}$ where $N \in \mathcal{S}$
- the transition matrix (estimated over Escherichia Coli genome)

$$\begin{pmatrix} A & C & G & T & A & C & G & T \\ p_{AA} & p_{AC} & p_{AG} & p_{AT} \\ p_{CA} & p_{CC} & p_{CG} & p_{CT} \\ p_{GA} & p_{GC} & p_{GG} & p_{GT} \\ p_{TA} & p_{TC} & p_{TG} & p_{TT} \end{pmatrix} = \begin{pmatrix} 0.30 & 0.21 & 0.22 & 0.27 \\ 0.23 & 0.23 & 0.32 & 0.22 \\ 0.28 & 0.29 & 0.23 & 0.20 \\ 0.19 & 0.28 & 0.23 & 0.30 \end{pmatrix}$$

and the stationary distribution

$$\mu = (0.2501, 0.2524, 0.2502, 0.2473)$$

A. Amărioarei (Laboratoire P. Painlevé)

э

Comparison between i.i.d. and Markov case:

A. Amărioarei (Laboratoire P. Painlevé)

SPSR 2011 24 / 34

Outline

- Introduction
 - Problem
- 2 Description of the method
 - Definitions and main results
 - The forward-backward principle
- Waiting time distributions
 Definitions and main results
 - An example
- Applications to Scan Statistics
 Model
 - Numerical example
- Conclusions
- 6 References

Scan Statisitcs

•
$$(X_t)_{t=\overline{1,n}}$$
 - two-state Markov dependent

$$P=egin{pmatrix} p_{00}&p_{01}\ p_{10}&p_{11} \end{pmatrix}$$

• the scan statistic of window size r

$$S_n(r) = \max_{\substack{r \leq t \leq n}} \sum_{k=t-r+1}^t X_k.$$

• the idea is to express the distribution of the $S_n(r)$ in terms of the waiting time distribution of a special compound pattern

A. Amărioarei (Laboratoire P. Painlevé)

SPSR 2011 26 / 34

Scan Statisitcs

•
$$(X_t)_{t=\overline{1,n}}$$
 - two-state Markov dependent

$$P = \begin{pmatrix} p_{00} & p_{01} \\ p_{10} & p_{11} \end{pmatrix}$$

• the scan statistic of window size r

$$S_n(r) = \max_{\substack{r \leq t \leq n}} \sum_{k=t-r+1}^t X_k.$$

• the idea is to express the distribution of the $S_n(r)$ in terms of the

A. Amărioarei (Laboratoire P. Painlevé)

SPSR 2011 26 / 34
Scan Statisitcs

•
$$(X_t)_{t=\overline{1,n}}$$
 - two-state Markov dependent

$$P = \begin{pmatrix} p_{00} & p_{01} \\ p_{10} & p_{11} \end{pmatrix}$$

• the scan statistic of window size r

$$S_n(r) = \max_{\substack{r \leq t \leq n}} \sum_{k=t-r+1}^t X_k.$$

• the idea is to express the distribution of the $S_n(r)$ in terms of the waiting time distribution of a special compound pattern

A. Amărioarei (Laboratoire P. Painlevé)

MCIT and applications

SPSR 2011

26 / 34

Distribution of Scan Statistics in 4 Steps

• define for 0 < k < r

$$\mathcal{F}_{r,k} = \{\Lambda_i | \Lambda_1 = \underbrace{1 \dots 1}_{k}, \Lambda_2 = 10 \underbrace{1 \dots 1}_{k-1}, \dots, \Lambda_l = \underbrace{1 \dots 1}_{k-1} \underbrace{0 \dots 01}_{k-1}\}$$
$$|\mathcal{F}_{r,k}| = \sum_{i=0}^{r-k} \binom{k-2+j}{j}$$

$$\mathbb{P}(S_n(r) < k) = \mathbb{P}(W(\Lambda) \ge n+1).$$

A. Amărioarei (Laboratoire P. Painlevé)

SPSR 2011 27 / 34

イロト 不得下 イヨト イヨト

r

Distribution of Scan Statistics in 4 Steps

1 define for 0 < k < r

$$\mathcal{F}_{r,k} = \{\Lambda_i | \Lambda_1 = \underbrace{1 \dots 1}_{k}, \Lambda_2 = 10 \underbrace{1 \dots 1}_{k-1}, \dots, \Lambda_l = \underbrace{1 \dots 1}_{k-1} \underbrace{0 \dots 01}_{k-1} \}$$
$$|\mathcal{F}_{r,k}| = \sum_{j=0}^{r-k} \binom{k-2+j}{j}$$

the compound pattern $\Lambda = \bigcup_{i=1}^{l} \Lambda_i, \ \Lambda_i \in \mathcal{F}_{r,k}$ 2

$$\mathbb{P}(S_n(r) < k) = \mathbb{P}(W(\Lambda) \ge n+1).$$

A. Amărioarei (Laboratoire P. Painlevé)

SPSR 2011 27 / 34

(日) (周) (日) (日) (日)

Distribution of Scan Statistics in 4 Steps

1 define for 0 < k < r

$$\mathcal{F}_{r,k} = \{\Lambda_i | \Lambda_1 = \underbrace{1 \dots 1}_{k}, \Lambda_2 = 10 \underbrace{1 \dots 1}_{k-1}, \dots, \Lambda_l = \underbrace{1 \dots 1}_{k-1} \underbrace{0 \dots 01}_{k-1} \}$$
$$|\mathcal{F}_{r,k}| = \sum_{j=0}^{r-k} \binom{k-2+j}{j}$$

2 the compound pattern $\Lambda = \bigcup_{i=1}^{l} \Lambda_i, \ \Lambda_i \in \mathcal{F}_{r,k}$ the dual property

$$\mathbb{P}(S_n(r) < k) = \mathbb{P}(W(\Lambda) \ge n+1).$$

A. Amărioarei (Laboratoire P. Painlevé)

SPSR 2011 27 / 34

(日) (周) (日) (日) (日)

Distribution of Scan Statistics in 4 Steps

• define for 0 < k < r

$$\mathcal{F}_{r,k} = \{\Lambda_i | \Lambda_1 = \underbrace{1 \dots 1}_{k}, \Lambda_2 = 10 \underbrace{1 \dots 1}_{k-1}, \dots, \Lambda_l = \underbrace{1 \dots 1}_{k-1} \underbrace{0 \dots 01}_{k-1} \}$$
$$|\mathcal{F}_{r,k}| = \sum_{j=0}^{r-k} \binom{k-2+j}{j}$$

2 the compound pattern $\Lambda = \bigcup_{i=1}^{l} \Lambda_i, \ \Lambda_i \in \mathcal{F}_{r,k}$ the dual property

$$\mathbb{P}(S_n(r) < k) = \mathbb{P}(W(\Lambda) \ge n+1).$$

the matrix formula

$$\mathbb{P}(S_n(r) < k) = \boldsymbol{\xi} \boldsymbol{N}^n \mathbf{1}^\intercal,$$
 where $\boldsymbol{\xi} = (1,0,\ldots,0)$

- an illustration for n = 20 and r = 30 1 0 · 1 1 1 0 1 1 0 1 1 0 0 0 0 Ω $S_{20}(3) = 1$
- for *r* = 4 and *k* = 3

$$\mathcal{F}_{4,3} = \{\Lambda_1 = 111, \Lambda_2 = 1011, \Lambda_3 = 1101\}$$

• the state space

 $\Omega = \{\emptyset, 0, 1, 10, 11, 101, 110, \alpha_1, \alpha_2, \alpha_3\}$

(日) (同) (三) (三)

3

28 / 34

SPSR 2011

A. Amărioarei (Laboratoire P. Painlevé)

$$\mathcal{F}_{4,3} = \{\Lambda_1 = 111, \Lambda_2 = 1011, \Lambda_3 = 1101\}$$

• the state space

 $\Omega = \{\emptyset, 0, 1, 10, 11, 101, 110, \alpha_1, \alpha_2, \alpha_3\}$

A. Amărioarei (Laboratoire P. Painlevé)

▶ ▲ ■ ▶ ■ つへの SPSR 2011 28 / 34

• for *r* = 4 and *k* = 3

$$\mathcal{F}_{4,3} = \{\Lambda_1 = 111, \Lambda_2 = 1011, \Lambda_3 = 1101\}$$

• the state space

 $\Omega = \{\emptyset, 0, 1, 10, 11, 101, 110, \alpha_1, \alpha_2, \alpha_3\}$

A. Amărioarei (Laboratoire P. Painlevé)

▶ ▲ ■ ▶ ■ つへの SPSR 2011 28 / 34

• an illustration for n = 20 and r = 30 0 0 1 0 1 0 1 1 0 0 0 0 1 $S_{20}(3) = 1$

$$\mathcal{F}_{4,3} = \{\Lambda_1 = 111, \Lambda_2 = 1011, \Lambda_3 = 1101\}$$

• the state space

 $\Omega = \{\emptyset, 0, 1, 10, 11, 101, 110, \alpha_1, \alpha_2, \alpha_3\}$

A. Amărioarei (Laboratoire P. Painlevé)

SPSR 2011 28 / 34

3

• an illustration for n = 20 and r = 30 0 1 0 0 1 0 1 0 1 0 0 1 0 | $S_{20}(3) = 2$

• for *r* = 4 and *k* = 3

$$\mathcal{F}_{4,3} = \{\Lambda_1 = 111, \Lambda_2 = 1011, \Lambda_3 = 1101\}$$

• the state space

 $\Omega = \{\emptyset, 0, 1, 10, 11, 101, 110, \alpha_1, \alpha_2, \alpha_3\}$

A. Amărioarei (Laboratoire P. Painlevé)

SPSR 2011 28 / 34

3

$$\mathcal{F}_{4,3} = \{\Lambda_1 = 111, \Lambda_2 = 1011, \Lambda_3 = 1101\}$$

• the state space

 $\Omega = \{\emptyset, 0, 1, 10, 11, 101, 110, \alpha_1, \alpha_2, \alpha_3\}$

A. Amărioarei (Laboratoire P. Painlevé)

$$\mathcal{F}_{4,3} = \{\Lambda_1 = 111, \Lambda_2 = 1011, \Lambda_3 = 1101\}$$

• the state space

 $\Omega = \{\emptyset, 0, 1, 10, 11, 101, 110, \alpha_1, \alpha_2, \alpha_3\}$

A. Amărioarei (Laboratoire P. Painlevé)

• for r = 4 and k = 3

 $\mathcal{F}_{4,3} = \{\Lambda_1 = 111, \Lambda_2 = 1011, \Lambda_3 = 1101\}$

• the state space

 $\Omega = \{\emptyset, 0, 1, 10, 11, 101, 110, \alpha_1, \alpha_2, \alpha_3\}$

A. Amărioarei (Laboratoire P. Painlevé)

■ ◆ ■ ◆ ■ ◆ への SPSR 2011 28 / 34

• for r = 4 and k = 3

$$\mathcal{F}_{4,3} = \{\Lambda_1 = 111, \Lambda_2 = 1011, \Lambda_3 = 1101\}$$

• the state space

 $\Omega = \{\emptyset, 0, 1, 10, 11, 101, 110, \alpha_1, \alpha_2, \alpha_3\}$

A. Amărioarei (Laboratoire P. Painlevé)

■ ◆ ■ ◆ ■ → へへの SPSR 2011 28 / 34

< □ > < □ > < □ > < □ > < □ > < □ >

• for r = 4 and k = 3

$$\mathcal{F}_{4,3} = \{\Lambda_1 = 111, \Lambda_2 = 1011, \Lambda_3 = 1101\}$$

• the state space

 $\Omega = \{\emptyset, 0, 1, 10, 11, 101, 110, \alpha_1, \alpha_2, \alpha_3\}$

A. Amărioarei (Laboratoire P. Painlevé)

SPSR 2011 28 / 34

3

$$\mathcal{F}_{4,3} = \{\Lambda_1 = 111, \Lambda_2 = 1011, \Lambda_3 = 1101\}$$

• the state space

 $\Omega = \{\emptyset, 0, 1, 10, 11, 101, 110, \alpha_1, \alpha_2, \alpha_3\}$

A. Amărioarei (Laboratoire P. Painlevé)

SPSR 2011 28 / 34

3

$$\mathcal{F}_{4,3} = \{\Lambda_1 = 111, \Lambda_2 = 1011, \Lambda_3 = 1101\}$$

• the state space

 $\Omega = \{\emptyset, 0, 1, 10, 11, 101, 110, \alpha_1, \alpha_2, \alpha_3\}$

A. Amărioarei (Laboratoire P. Painlevé)

SPSR 2011 28 / 34

3

$$\mathcal{F}_{4,3} = \{\Lambda_1 = 111, \Lambda_2 = 1011, \Lambda_3 = 1101\}$$

• the state space

 $\Omega = \{\emptyset, 0, 1, 10, 11, 101, 110, \alpha_1, \alpha_2, \alpha_3\}$

A. Amărioarei (Laboratoire P. Painlevé)

SPSR 2011 28 / 34

3

$$\mathcal{F}_{4,3} = \{\Lambda_1 = 111, \Lambda_2 = 1011, \Lambda_3 = 1101\}$$

• the state space

 $\Omega = \{\emptyset, 0, 1, 10, 11, 101, 110, \alpha_1, \alpha_2, \alpha_3\}$

A. Amărioarei (Laboratoire P. Painlevé)

$$\mathcal{F}_{4,3} = \{\Lambda_1 = 111, \Lambda_2 = 1011, \Lambda_3 = 1101\}$$

• the state space

 $\Omega = \{\emptyset, 0, 1, 10, 11, 101, 110, \alpha_1, \alpha_2, \alpha_3\}$

A. Amărioarei (Laboratoire P. Painlevé)

■ ◆ ■ ◆ ■ ◆ へへへ SPSR 2011 28 / 34

$$\mathcal{F}_{4,3} = \{\Lambda_1 = 111, \Lambda_2 = 1011, \Lambda_3 = 1101\}$$

• the state space

 $\Omega = \{\emptyset, 0, 1, 10, 11, 101, 110, \alpha_1, \alpha_2, \alpha_3\}$

A. Amărioarei (Laboratoire P. Painlevé)

SPSR 2011 28 / 34

3

$$\mathcal{F}_{4,3} = \{\Lambda_1 = 111, \Lambda_2 = 1011, \Lambda_3 = 1101\}$$

• the state space

 $\Omega = \{\emptyset, 0, 1, 10, 11, 101, 110, \alpha_1, \alpha_2, \alpha_3\}$

A. Amărioarei (Laboratoire P. Painlevé)

$$\mathcal{F}_{4,3} = \{\Lambda_1 = 111, \Lambda_2 = 1011, \Lambda_3 = 1101\}$$

• the state space

 $\Omega = \{\emptyset, 0, 1, 10, 11, 101, 110, \alpha_1, \alpha_2, \alpha_3\}$

A. Amărioarei (Laboratoire P. Painlevé)

SPSR 2011 28 / 34

3

for r = 4 and k = 3

$$\mathcal{F}_{4,3} = \{\Lambda_1 = 111, \Lambda_2 = 1011, \Lambda_3 = 1101\}$$

• the state space

 $\Omega = \{\emptyset, 0, 1, 10, 11, 101, 110, \alpha_1, \alpha_2, \alpha_3\}$

A. Amărioarei (Laboratoire P. Painlevé)

■ ◆ ■ ◆ ■ ◆ への SPSR 2011 28 / 34

< □ > < □ > < □ > < □ > < □ > < □ >

for r = 4 and k = 3

$$\mathcal{F}_{4,3} = \{\Lambda_1 = 111, \Lambda_2 = 1011, \Lambda_3 = 1101\}$$

the state space

 $\Omega = \{ \emptyset, 0, 1, 10, 11, 101, 110, \alpha_1, \alpha_2, \alpha_3 \}$

A. Amărioarei (Laboratoire P. Painlevé)

■ ◆ ■ ◆ ■ ◆ へへへ SPSR 2011 28 / 34

▲ @ ▶ < ∃ ▶ </p>

• the transition matrix **M**:

1												`
(0	q	р	0	0	0	0	:	0	0	0	
	0	p 00	p 01	0	0	0	0		0	0	0	
	0	0	0	p_{10}	p_{11}	0	0	÷	0	0	0	
	0	p_{00}	0	0	0	p_{01}	0	:	0	0	0	
	0	0	0	0	0	0	p_{10}	÷	p_{11}	0	0	
	0	0	0	p_{10}	0	0	0		0	p_{11}	0	
	0	p_{00}	0	0	0	0	0	÷	0	0	p ₀₁	
	• • •	•••	•••	•••	•••	•••	•••	•••	•••	•••	• • •	
	0	0	0	0	0	0	0		1	0	0	
	0	0	0	0	0	0	0	÷	0	1	0	
	0	0	0	0	0	0	0	÷	0	0	1	

3 **SPSR 2011** 29 / 34

イロト イヨト イヨト イヨト

Outline

- Introduction
 - Problem
- 2 Description of the method
 - Definitions and main results
 - The forward-backward principle
- 3 Waiting time distributions
 - Definitions and main results
 - An example
- Applications to Scan Statistics
 Model
 - Numerical example

< ∃ ►

An example for windows size r = 10

n	k	(p,q) = (0.4091, 0.5909)	$p_{11} = 0.35, p_{21} = 0.45$			
100	5 2.3233 $\times 10^{-4}$		$2.0318 imes 10^{-4}$			
	6	0.0166	0.0233			
	7	0.1953	0.2801			
	8	0.6204	0.7488			
	9	0.9168	0.9638			
300	5	$5.8339 imes 10^{-12}$	$3.7279 imes 10^{-12}$			
	6	$2.9108 imes10^{-6}$	$8.1662 imes 10^{-6}$			
	7	0.0060	0.0185			
	8	0.2223	0.4014			
	9	0.7595	0.8896			
500	5	$1.4649 imes 10^{-19}$	$6.8399 imes 10^{-20}$			
	6	$5.1014 imes 10^{-10}$	$2.8665 imes 10^{-9}$			
	7	$1.8544 imes10^{-4}$	0.0012			
	8	0.0796	0.2151			
	9	0.6292	0.8212			

A. Amărioarei (Laboratoire P. Painlevé)

■ ▶ 《 ■ ▶ ■ つへで SPSR 2011 31 / 34

イロト イポト イヨト イヨト

Comparison between i.i.d. and Markov case:

SPSR 2011 32 / 34

э

Advantages:

- the method gives exact results for the distribution of $X_n(\Lambda)$
- the method is simple than the traditional approach
- the method can be used for both: i.i.d. and Markov chain sources

• Disadvantages:

 for big n the order of the state space and the transition matrix become very large and in this case the need for approximations methods is mandatory

Advantages:

• the method gives exact results for the distribution of $X_n(\Lambda)$

- the method is simple than the traditional approach
- the method can be used for both: i.i.d. and Markov chain sources

• Disadvantages:

 for big n the order of the state space and the transition matrix become very large and in this case the need for approximations methods is mandatory

- Advantages:
 - the method gives exact results for the distribution of $X_n(\Lambda)$
 - the method is simple than the traditional approach
 - the method can be used for both: i.i.d. and Markov chain sources
- Disadvantages:
 - for big n the order of the state space and the transition matrix become very large and in this case the need for approximations methods is mandatory

- Advantages:
 - the method gives exact results for the distribution of $X_n(\Lambda)$
 - the method is simple than the traditional approach
 - the method can be used for both: i.i.d. and Markov chain sources

• Disadvantages:

 for big n the order of the state space and the transition matrix become very large and in this case the need for approximations methods is mandatory

• • • • • • • • • • • • •

SPSR 2011

33 / 34

- Advantages:
 - the method gives exact results for the distribution of $X_n(\Lambda)$
 - the method is simple than the traditional approach
 - the method can be used for both: i.i.d. and Markov chain sources

Disadvantages:

• for big *n* the order of the state space and the transition matrix become very large and in this case the need for approximations methods is mandatory

SPSR 2011

33 / 34

- Advantages:
 - the method gives exact results for the distribution of $X_n(\Lambda)$
 - the method is simple than the traditional approach
 - the method can be used for both: i.i.d. and Markov chain sources
- Disadvantages:
 - for big *n* the order of the state space and the transition matrix become very large and in this case the need for approximations methods is mandatory

Chang, Y.M.: Distribution of waiting time until the *r*th occurence of a compound pattern. *Statistics & Probability Letters* **75** (2005), 29–38.

- Fu, J.: Distribution theory of runs and patterns associated with a sequence of multistate trials. *Statistica Sinica* 6 (1996), 957–974.
- Fu, J.: Distribution of the scan statistic for a sequence of bistate trials. *J. Appl. Prob.* **38** (2001), 908–916.

Fu, J., Wendy Lou, W.Y.: Distribution theory of runs and patterns and its applications: A Markov chain imbedding approach. *World Scientific-Singapore* (2003).

Koutras, M.V., Alexandrou, V.A.: Runs, scans and urn model distributions: a unified Markov chain approach. Ann. Inst. Statist. Math. 47 (1995), 743–766.

A D N A B N A B N A
- Chang, Y.M.: Distribution of waiting time until the rth occurence of a compound pattern. *Statistics & Probability Letters* **75** (2005), 29–38.
- Fu, J., Koutras, M.V.: Distribution theory of runs: a Markov chain approach. J. American Statistical Association 89 (1994), 1050–1056.
- Fu, J.: Distribution theory of runs and patterns associated with a sequence of multistate trials. *Statistica Sinica* **6** (1996), 957–974.
- Fu, J.: Distribution of the scan statistic for a sequence of bistate trials. *J. Appl. Prob.* **38** (2001), 908–916.

Fu, J., Wendy Lou, W.Y.: Distribution theory of runs and patterns and its applications: A Markov chain imbedding approach. *World Scientific-Singapore* (2003).

Koutras, M.V., Alexandrou, V.A.: Runs, scans and urn model distributions: a unified Markov chain approach. Ann. Inst. Statist Math. 47 (1995), 743–766.

- Chang, Y.M.: Distribution of waiting time until the rth occurence of a compound pattern. Statistics & Probability Letters 75 (2005), 29–38.
- Fu, J., Koutras, M.V.: Distribution theory of runs: a Markov chain approach. *J. American Statistical Association* **89** (1994), 1050–1056.
- Fu, J.: Distribution theory of runs and patterns associated with a sequence of multistate trials. *Statistica Sinica* 6 (1996), 957–974.
- Fu, J.: Distribution of the scan statistic for a sequence of bistate trials. *J. Appl. Prob.* **38** (2001), 908–916.

Fu, J., Wendy Lou, W.Y.: Distribution theory of runs and patterns and its applications: A Markov chain imbedding approach. *World Scientific-Singapore* (2003).

Koutras, M.V., Alexandrou, V.A.: Runs, scans and urn model distributions: a unified Markov chain approach. Ann. Inst. Statist Math. 47 (1995), 743–766.

< ロト < 同ト < ヨト < ヨ

- Chang, Y.M.: Distribution of waiting time until the rth occurence of a compound pattern. Statistics & Probability Letters 75 (2005), 29–38.
- Fu, J., Koutras, M.V.: Distribution theory of runs: a Markov chain approach. *J. American Statistical Association* **89** (1994), 1050–1056.
- Fu, J.: Distribution theory of runs and patterns associated with a sequence of multistate trials. Statistica Sinica 6 (1996), 957–974.
- Fu, J.: Distribution of the scan statistic for a sequence of bistate trials.
 J. Appl. Prob. 38 (2001), 908-916.

Fu, J., Wendy Lou, W.Y.: Distribution theory of runs and patterns and its applications: A Markov chain imbedding approach. *World Scientific-Singapore* (2003).

Koutras, M.V., Alexandrou, V.A.: Runs, scans and urn model distributions: a unified Markov chain approach. Ann. Inst. Statist Math. 47 (1995), 743–766.

(日) (同) (目) (日)

- Chang, Y.M.: Distribution of waiting time until the rth occurence of a compound pattern. Statistics & Probability Letters 75 (2005), 29–38.
- Fu, J., Koutras, M.V.: Distribution theory of runs: a Markov chain approach. J. American Statistical Association 89 (1994), 1050–1056.
- Fu, J.: Distribution theory of runs and patterns associated with a sequence of multistate trials. Statistica Sinica 6 (1996), 957–974.
- Fu, J.: Distribution of the scan statistic for a sequence of bistate trials.
 J. Appl. Prob. 38 (2001), 908-916.
- Fu, J., Wendy Lou, W.Y.: Distribution theory of runs and patterns and its applications: A Markov chain imbedding approach. *World Scientific-Singapore* (2003).

Koutras, M.V., Alexandrou, V.A.: Runs, scans and urn model distributions: a unified Markov chain approach. *Ann. Inst. Statist. Math.* **47** (1995), 743–766.

(日) (同) (目) (日)

- Chang, Y.M.: Distribution of waiting time until the rth occurence of a compound pattern. Statistics & Probability Letters 75 (2005), 29–38.
- Fu, J., Koutras, M.V.: Distribution theory of runs: a Markov chain approach. J. American Statistical Association 89 (1994), 1050–1056.
- Fu, J.: Distribution theory of runs and patterns associated with a sequence of multistate trials. Statistica Sinica 6 (1996), 957–974.
- Fu, J.: Distribution of the scan statistic for a sequence of bistate trials.
 J. Appl. Prob. 38 (2001), 908-916.
- Fu, J., Wendy Lou, W.Y.: Distribution theory of runs and patterns and its applications: A Markov chain imbedding approach. *World Scientific-Singapore* (2003).
- Koutras, M.V., Alexandrou, V.A.: Runs, scans and urn model distributions: a unified Markov chain approach. Ann. Inst. Statist. Math. 47 (1995), 743–766.

(日) (周) (日) (日)