The Markov Chain Imbedding Technique
Application to Scan Statistics

Alexandru Amǎrioarei

Laboratoire de Mathématiques Paul Painlevé
Département de Probabilités et Statistique
Université de Lille 1

SPSR Conference, 2011
1 Introduction
 • Problem

2 Description of the method
 • Definitions and main results
 • The forward-backward principle

3 Waiting time distributions
 • Definitions and main results
 • An example

4 Applications to Scan Statistics
 • Model
 • Numerical example

5 Conclusions

6 References
Outline

1 Introduction
 • Problem

2 Description of the method
 • Definitions and main results
 • The forward-backward principle

3 Waiting time distributions
 • Definitions and main results
 • An example

4 Applications to Scan Statistics
 • Model
 • Numerical example

5 Conclusions

6 References
Problem

Compute the exact distribution of runs and patterns in a sequence of multi-state trial outcomes generated by an i.i.d. or Markov source.

Different approaches

- Traditional approach: combinatorial methods
 - i.i.d. case (Makri 1986 and Hirano 1990)
- Markov Chain Imbedding Technique (Fu and Koutras 1994)
 - i.i.d. case
 - Markov chain case
Problem

Compute the exact distribution of runs and patterns in a sequence of multi-state trial outcomes generated by an i.i.d. or Markov source.

Different approaches

1. Traditional approach: combinatorial methods
 - i.i.d. case (Makri 1986 and Hirano 1986)

2. Markov Chain Imbedding Technique (Fu and Koutras 1994)
 - i.i.d. case
 - Markov chain case
Problem

Compute the exact distribution of runs and patterns in a sequence of multi-state trial outcomes generated by an i.i.d. or Markov source.

Different approaches

1. Traditional approach: combinatorial methods
 - i.i.d. case (Makri 1986 and Hirano 1986)
2. Markov Chain Imbedding Technique (Fu and Koutras 1994)
 - i.i.d. case
 - Markov chain case
Problem

Compute the exact distribution of runs and patterns in a sequence of multi-state trial outcomes generated by an i.i.d. or Markov source.

Different approaches

1. Traditional approach: combinatorial methods
 - i.i.d. case (Makri 1986 and Hirano 1986)

2. Markov Chain Imbedding Technique (Fu and Koutras 1994)
 - i.i.d. case
 - Markov chain case
Problem

Compute the exact distribution of runs and patterns in a sequence of multi-state trial outcomes generated by an i.i.d. or Markov source.

Different approaches

1. Traditional approach: combinatorial methods
 - i.i.d. case (Makri 1986 and Hirano 1986)
2. Markov Chain Imbedding Technique (Fu and Koutras 1994)
 - i.i.d. case
 - Markov chain case
Problem

Compute the exact distribution of runs and patterns in a sequence of multi-state trial outcomes generated by an i.i.d. or Markov source.

Different approaches

1. Traditional approach: combinatorial methods
 - i.i.d. case (Makri 1986 and Hirano 1986)

2. Markov Chain Imbedding Technique (Fu and Koutras 1994)
 - i.i.d. case
 - Markov chain case
Problem
Compute the exact distribution of runs and patterns in a sequence of multi-state trial outcomes generated by an i.i.d. or Markov source.

Different approaches

1. Traditional approach: combinatorial methods
 - i.i.d. case (Makri 1986 and Hirano 1986)

2. Markov Chain Imbedding Technique (Fu and Koutras 1994)
 - i.i.d. case
 - Markov chain case
Outline

1. Introduction
 - Problem

2. Description of the method
 - Definitions and main results
 - The forward-backward principle

3. Waiting time distributions
 - Definitions and main results
 - An example

4. Applications to Scan Statistics
 - Model
 - Numerical example

5. Conclusions

6. References
Given X_1, X_2, \ldots, X_n a sequence of multi-state trials over the alphabet $S = \{b_1, \ldots, b_m\}$ we say that

- Λ is a **simple pattern** if $\Lambda = b_{i_1} b_{i_2} \ldots b_{i_k}$ where $b_{i_j} \in S$ for all $j = 1, k$
- Λ_1 and Λ_2 are **distinct** if neither $\Lambda_1 \subset \Lambda_2$ nor $\Lambda_2 \subset \Lambda_1$
- the union $\Lambda_1 \cup \Lambda_2$ denote the occurrence of either Λ_1 or Λ_2
- Λ is a **compound pattern** if it can be written as the union of simple distinct patterns
- $X_n(\Lambda)$ denote the number of occurrences of the pattern Λ in the sequence X_1, X_2, \ldots, X_n using both overlapping and non-overlapping counting scheme

Example

Consider a simple pattern $\Lambda = ACA$ over the alphabet $S = \{A, C, G, T\}$ and the realization: $ATCACACATAGACAC\underline{AGTAC}$

- $X_{20}(\Lambda) = 2$ under non-overlapping scheme
- $X_{20}(\Lambda) = 4$ under overlapping scheme
Given \(X_1, X_2, \ldots, X_n \) a sequence of multi-state trials over the alphabet \(S = \{ b_1, \ldots, b_m \} \) we say that

- \(\Lambda \) is a simple pattern if \(\Lambda = b_{i_1} b_{i_2} \ldots b_{i_k} \) where \(b_{i_j} \in S \) for all \(j = 1, k \)
- \(\Lambda_1 \) and \(\Lambda_2 \) are distinct if neither \(\Lambda_1 \subset \Lambda_2 \) nor \(\Lambda_2 \subset \Lambda_1 \)
- the union \(\Lambda_1 \cup \Lambda_2 \) denote the occurrence of either \(\Lambda_1 \) or \(\Lambda_2 \)
- \(\Lambda \) is a compound pattern if it can be written as the union of simple distinct patterns
- \(X_n(\Lambda) \) denote the number of occurrences of the pattern \(\Lambda \) in the sequence \(X_1, X_2, \ldots, X_n \) using both overlapping and non-overlapping counting scheme

Example

Consider a simple pattern \(\Lambda = ACA \) over the alphabet \(S = \{ A, C, G, T \} \) and the realization: \(\underline{ATCACA}CATAGACACAGTAC \)

- \(X_{20}(\Lambda) = 2 \) under non-overlapping scheme
- \(X_{20}(\Lambda) = 4 \) under overlapping scheme
Given X_1, X_2, \ldots, X_n a sequence of multi-state trials over the alphabet $S = \{b_1, \ldots, b_m\}$ we say that

- Λ is a **simple pattern** if $\Lambda = b_{i_1} b_{i_2} \ldots b_{i_k}$ where $b_{i_j} \in S$ for all $j = 1, k$
- Λ_1 and Λ_2 are **distinct** if neither $\Lambda_1 \subset \Lambda_2$ nor $\Lambda_2 \subset \Lambda_1$
- the union $\Lambda_1 \cup \Lambda_2$ denote the occurrence of either Λ_1 or Λ_2
- Λ is a **compound pattern** if it can be written as the union of simple distinct patterns
- $X_n(\Lambda)$ denote the number of occurrences of the pattern Λ in the sequence X_1, X_2, \ldots, X_n using both overlapping and non-overlapping counting scheme

Example

Consider a simple pattern $\Lambda = ACA$ over the alphabet $S = \{A, C, G, T\}$ and the realization: \textcolor{blue}{ATCACACATAGACACACAGTAC}

- $X_{20}(\Lambda) = 2$ under non-overlapping scheme
- $X_{20}(\Lambda) = 4$ under overlapping scheme
Given X_1, X_2, \ldots, X_n a sequence of multi-state trials over the alphabet $S = \{b_1, \ldots, b_m\}$ we say that

- Λ is a **simple pattern** if $\Lambda = b_{i_1}b_{i_2} \ldots b_{i_k}$ where $b_{i_j} \in S$ for all $j = 1, k$
- Λ_1 and Λ_2 are **distinct** if neither $\Lambda_1 \subset \Lambda_2$ nor $\Lambda_2 \subset \Lambda_1$
- the union $\Lambda_1 \cup \Lambda_2$ denote the occurrence of either Λ_1 or Λ_2
- Λ is a **compound pattern** if it can be written as the union of simple distinct patterns

- $X_n(\Lambda)$ denote the number of occurrences of the pattern Λ in the sequence X_1, X_2, \ldots, X_n using both overlapping and non-overlapping counting scheme

Example

Consider a simple pattern $\Lambda = ACA$ over the alphabet $S = \{A, C, G, T\}$ and the realization: $ATC\underline{AC}C\underline{ACA}\underline{TAGAC}\underline{ACACAGTAC}$

- $X_{20}(\Lambda) = 2$ under non-overlapping scheme
- $X_{20}(\Lambda) = 4$ under overlapping scheme
Given X_1, X_2, \ldots, X_n a sequence of multi-state trials over the alphabet $S = \{b_1, \ldots, b_m\}$ we say that

- Λ is a simple pattern if $\Lambda = b_{i_1} b_{i_2} \ldots b_{i_k}$ where $b_{i_j} \in S$ for all $j = 1, k$
- Λ_1 and Λ_2 are distinct if neither $\Lambda_1 \subset \Lambda_2$ nor $\Lambda_2 \subset \Lambda_1$
- the union $\Lambda_1 \cup \Lambda_2$ denote the occurrence of either Λ_1 or Λ_2
- Λ is a compound pattern if it can be written as the union of simple distinct patterns
- $X_n(\Lambda)$ denote the number of occurrences of the pattern Λ in the sequence X_1, X_2, \ldots, X_n using both overlapping and non-overlapping counting scheme

Example

Consider a simple pattern $\Lambda = ACA$ over the alphabet $S = \{A, C, G, T\}$ and the realization: $ATC\underline{A}\underline{C}ATAG\underline{A}\underline{C}\underline{A}GTAC$

- $X_{20}(\Lambda) = 2$ under non-overlapping scheme
- $X_{20}(\Lambda) = 4$ under overlapping scheme
Given X_1, X_2, \ldots, X_n a sequence of multi-state trials over the alphabet $S = \{b_1, \ldots, b_m\}$ we say that

- Λ is a *simple pattern* if $\Lambda = b_{i_1} b_{i_2} \ldots b_{i_k}$ where $b_{i_j} \in S$ for all $j = 1, k$
- Λ_1 and Λ_2 are *distinct* if neither $\Lambda_1 \subset \Lambda_2$ nor $\Lambda_2 \subset \Lambda_1$
- the union $\Lambda_1 \cup \Lambda_2$ denote the occurrence of either Λ_1 or Λ_2
- Λ is a *compound pattern* if it can be written as the union of simple distinct patterns
- $X_n(\Lambda)$ denote the number of occurrences of the pattern Λ in the sequence X_1, X_2, \ldots, X_n using both overlapping and non-overlapping counting scheme

Example

Consider a simple pattern $\Lambda = ACA$ over the alphabet $S = \{A, C, G, T\}$ and the realization: $ATC\underline{A}C\underline{A}C\underline{A}ATA\underline{G}AC\underline{A}C\underline{A}G\underline{T}AC$

- $X_{20}(\Lambda) = 2$ under non-overlapping scheme
- $X_{20}(\Lambda) = 4$ under overlapping scheme
Given X_1, X_2, \ldots, X_n a sequence of multi-state trials over the alphabet $S = \{b_1, \ldots, b_m\}$ we say that

- Λ is a **simple pattern** if $\Lambda = b_{i_1} b_{i_2} \ldots b_{i_k}$ where $b_{i_j} \in S$ for all $j = 1, k$
- Λ_1 and Λ_2 are **distinct** if neither $\Lambda_1 \subset \Lambda_2$ nor $\Lambda_2 \subset \Lambda_1$
- the union $\Lambda_1 \cup \Lambda_2$ denote the occurrence of either Λ_1 or Λ_2
- Λ is a **compound pattern** if it can be written as the union of simple distinct patterns
- $X_n(\Lambda)$ denote the number of occurrences of the pattern Λ in the sequence X_1, X_2, \ldots, X_n using both overlapping and non-overlapping counting scheme

Example

Consider a simple pattern $\Lambda = ACA$ over the alphabet $S = \{A, C, G, T\}$ and the realization: $ATCACACATAGACACACAGTAC$

- $X_{20}(\Lambda) = 2$ under non-overlapping scheme
- $X_{20}(\Lambda) = 4$ under overlapping scheme
Given X_1, X_2, \ldots, X_n a sequence of multi-state trials over the alphabet $S = \{b_1, \ldots, b_m\}$ we say that

- Λ is a simple pattern if $\Lambda = b_{i_1}b_{i_2}\ldots b_{i_k}$ where $b_{i_j} \in S$ for all $j = 1, k$
- Λ_1 and Λ_2 are distinct if neither $\Lambda_1 \subset \Lambda_2$ nor $\Lambda_2 \subset \Lambda_1$
- The union $\Lambda_1 \cup \Lambda_2$ denote the occurrence of either Λ_1 or Λ_2
- Λ is a compound pattern if it can be written as the union of simple distinct patterns
- $X_n(\Lambda)$ denote the number of occurrences of the pattern Λ in the sequence X_1, X_2, \ldots, X_n using both overlapping and non-overlapping counting scheme

Example

Consider a simple pattern $\Lambda = ACA$ over the alphabet $S = \{A, C, G, T\}$ and the realization: $ATC\underline{ACA}\underline{CATAGAC}\underline{ACA}\underline{GATAC}$

- $X_{20}(\Lambda) = 2$ under non-overlapping scheme
- $X_{20}(\Lambda) = 4$ under overlapping scheme
Definition

Given a compound pattern Λ we say that $X_n(\Lambda)$ is finite Markov chain imbeddable if:

- there exists a finite Markov chain $\{Y_t| t = 0, 1, \ldots, n\}$ defined on a finite state space $\Omega = \{a_1, a_2, \ldots, a_s\}$ with initial probability vector ξ_0
- there exists a finite partition $\{C_x| x = 0, 1, \ldots, l_n\}$ on the state space
- for every $x = 0, 1, \ldots, l_n$ we have

$$P(X_n(\Lambda) = x) = P(Y_n \in C_x|\xi_0)$$
Definition

Given a compound pattern Λ we say that $X_n(\Lambda)$ is *finite Markov chain imbeddable* if:

- there exists a finite Markov chain $\{Y_t | t = 0, 1, \ldots, n\}$ defined on a finite state space $\Omega = \{a_1, a_2, \ldots, a_s\}$ with initial probability vector ξ_0
- there exists a finite partition $\{C_x | x = 0, 1, \ldots, l_n\}$ on the state space
- for every $x = 0, 1, \ldots, l_n$ we have

$$P(X_n(\Lambda) = x) = P(Y_n \in C_x | \xi_0)$$
Definition

Given a compound pattern Λ we say that $X_n(\Lambda)$ is *finite Markov chain imbeddable* if:

- there exists a finite Markov chain $\{Y_t | t = 0, 1, \ldots, n\}$ defined on a finite state space $\Omega = \{a_1, a_2, \ldots, a_s\}$ with initial probability vector ξ_0;
- there exists a finite partition $\{C_x | x = 0, 1, \ldots, l_n\}$ on the state space;
- for every $x = 0, 1, \ldots, l_n$ we have

$$\mathbb{P}(X_n(\Lambda) = x) = \mathbb{P}(Y_n \in C_x | \xi_0)$$
Definition

Given a compound pattern Λ we say that $X_n(\Lambda)$ is finite Markov chain imbeddable if:

- there exists a finite Markov chain $\{Y_t|t = 0, 1, \ldots, n\}$ defined on a finite state space $\Omega = \{a_1, a_2, \ldots, a_s\}$ with initial probability vector ξ_0
- there exists a finite partition $\{C_x|x = 0, 1, \ldots, l_n\}$ on the state space
- for every $x = 0, 1, \ldots, l_n$ we have

$$P(X_n(\Lambda) = x) = P(Y_n \in C_x|\xi_0)$$
An application of Chapman-Kolmogorov equations leads to:

Theorem

If $X_n(\Lambda)$ is finite Markov chain imbeddable, then

$$P(X_n(\Lambda) = x) = \xi_0 M^n U^T(C_x)$$

- $\xi_0 = P(Y_0 = a_1, Y_0 = a_2, \ldots, Y_0 = a_s)$ is the initial probability vector
- M is the transition probability matrix of $(Y_t)_{t=0, n}$
- $U(C_x) = \sum_{a_j \in C_x} e_j$ and $e_j = (0, \ldots, 1, \ldots, 0)_{1 \times s}$ is an unit vector corresponding to a_j

The imbedded chain may be
- homogeneous
- non-homogeneous and $M^n \to \prod_{t=1}^n M_t$
An application of Chapman-Kolmogorov equations leads to:

Theorem

If $X_n(\Lambda)$ is finite Markov chain imbeddable, then

$$
P(X_n(\Lambda) = x) = \xi_0 M^n U^T(C_x)
$$

- $\xi_0 = P(Y_0 = a_1, Y_0 = a_2, \ldots, Y_0 = a_s)$ is the initial probability vector
- M is the transition probability matrix of $(Y_t)_{t=0}^{n}$
- $U(C_x) = \sum_{a_j \in C_x} e_j$ and $e_j = (0, \ldots, 1, \ldots, 0)_{1 \times s}$ is an unit vector corresponding to a_j

The imbedded chain may be
- homogeneous
- non-homogeneous and $M^n \rightarrow \prod_{t=1}^{n} M_t$
An application of Chapman-Kolmogorov equations leads to:

Theorem

If $X_n(\Lambda)$ is finite Markov chain imbeddable, then

$$P(X_n(\Lambda) = x) = \xi_0 M^n U^T(C_x)$$

- $\xi_0 = P(Y_0 = a_1, Y_0 = a_2, \ldots, Y_0 = a_s)$ is the initial probability vector
- M is the transition probability matrix of $(Y_t)_{t=0,n}$
- $U(C_x) = \sum_{a_j \in C_x} e_j$ and $e_j = (0, \ldots, 1, \ldots, 0)_{1 \times s}$ is an unit vector corresponding to a_j

The imbedded chain may be
- homogeneous
- non-homogeneous and $M^n \to \prod_{t=1}^n M_t$
An application of Chapman-Kolmogorov equations leads to:

Theorem

If $X_n(\Lambda)$ is finite Markov chain imbeddable, then

$$P(X_n(\Lambda) = x) = \xi_0 M^n U^T(C_x)$$

- $\xi_0 = P(Y_0 = a_1, Y_0 = a_2, \ldots, Y_0 = a_s)$ is the initial probability vector
- M is the transition probability matrix of $(Y_t)_{t=0,n}$
- $U(C_x) = \sum_{a_j \in C_x} e_j$ and $e_j = (0, \ldots, 1, \ldots, 0)_{1 \times s}$ is an unit vector corresponding to a_j

The imbedded chain may be

- homogeneous
- non-homogeneous and $M^n \to \prod_{t=1}^n M_t$
An application of Chapman-Kolmogorov equations leads to:

Theorem

If $X_n(\Lambda)$ is finite Markov chain imbeddable, then

$$\mathbb{P}(X_n(\Lambda) = x) = \xi_0 M^n U^T(C_x)$$

- $\xi_0 = \mathbb{P}(Y_0 = a_1, Y_0 = a_2, \ldots, Y_0 = a_s)$ is the initial probability vector
- M is the transition probability matrix of $(Y_t)_{t=0,n}$
- $U(C_x) = \sum_{a_j \in C_x} e_j$ and $e_j = (0, \ldots, 1, \ldots, 0)_{1 \times s}$ is an unit vector corresponding to a_j

The imbedded chain may be

- homogeneous
- non-homogeneous and $M^n \rightarrow \prod_{t=1}^n M_t$
An application of Chapman-Kolmogorov equations leads to:

Theorem

If $X_n(\Lambda)$ is finite Markov chain imbeddable, then

$$\mathbb{P}(X_n(\Lambda) = x) = \xi_0 M^n U^T(C_x)$$

- $\xi_0 = \mathbb{P}(Y_0 = a_1, Y_0 = a_2, \ldots, Y_0 = a_s)$ is the initial probability vector
- M is the transition probability matrix of $(Y_t)_{t=0,n}$
- $U(C_x) = \sum_{a_j \in C_x} e_j$ and $e_j = (0, \ldots, 1, \ldots, 0)_{1 \times s}$ is an unit vector corresponding to a_j

The imbedded chain may be

- homogeneous
- non-homogeneous and $M^n \rightarrow \prod_{t=1}^n M_t$
Outline

1 Introduction
 ● Problem

2 Description of the method
 ● Definitions and main results
 ● The forward-backward principle

3 Waiting time distributions
 ● Definitions and main results
 ● An example

4 Applications to Scan Statistics
 ● Model
 ● Numerical example

5 Conclusions

6 References
Question:
Can we always imbed a random variable associated with a specified pattern into a Markov chain?

...one way is by using *forward-backward* procedure developed by Fu (1996) based on

- a proper understanding of the structure of the specified pattern
- the counting procedure applied throughout the sequence
Question:
Can we always imbed a random variable associated with a specified pattern into a Markov chain?

...one way is by using forward-backward procedure developed by Fu (1996) based on

- a proper understanding of the structure of the specified pattern
- the counting procedure applied throughout the sequence
Question:
Can we always imbed a random variable associated with a specified pattern into a Markov chain?

...one way is by using forward-backward procedure developed by Fu (1996) based on

- a proper understanding of the structure of the specified pattern
- the counting procedure applied throughout the sequence
Non-overlap counting

Given

- \((X_t)_{t=1}^{n}\) - Markov dependent

 \[
 A = \begin{pmatrix}
 p_{11} & p_{12} & p_{13} \\
 p_{21} & p_{22} & p_{23} \\
 p_{31} & p_{32} & p_{33}
 \end{pmatrix}
 \]

- the alphabet \(S = \{b_1, b_2, b_3\}\)
- the simple pattern \(\Lambda = b_1 b_1 b_1 b_2\)
Non-overlap counting

Given

- $(X_t)_{t=1}^{n} -$ Markov dependent

$$A = \begin{pmatrix} p_{11} & p_{12} & p_{13} \\ p_{21} & p_{22} & p_{23} \\ p_{31} & p_{32} & p_{33} \end{pmatrix}$$

- the alphabet $\mathcal{S} = \{b_1, b_2, b_3\}$
- the simple pattern $\Lambda = b_1 b_1 b_1 b_2$
Non-overlap counting

Given

- \((X_t)_{t=1}^{n}\) - Markov dependent

\[
A = \begin{pmatrix}
p_{11} & p_{12} & p_{13} \\
p_{21} & p_{22} & p_{23} \\
p_{31} & p_{32} & p_{33}
\end{pmatrix}
\]

- the alphabet \(S = \{b_1, b_2, b_3\}\)
- the simple pattern \(\Lambda = b_1 b_1 b_1 b_2\)
We will give the method in five steps:

Step 1
Define $S(\Lambda) = \{b_1, b_1 b_1, b_1 b_1 b_1, b_1 b_1 b_1 b_2\}$ the set of all sequential sub-patterns and

$$\mathcal{E} = S \cup S(\Lambda) = \{b_1, b_2, b_3, b_1 b_1, b_1 b_1 b_1, b_1 b_1 b_1 b_2\}$$

Step 2
Define the state space

$$\Omega = \{(u, v) | u = 0, 1, \ldots, [n/4], v \in \mathcal{E}\} \cup \{\emptyset\} \setminus \{(0, b_1 b_1 b_1 b_2)\}$$
We will give the method in five steps:

Step 1 define $S(\Lambda) = \{b_1, b_1 b_1, b_1 b_1 b_1, b_1 b_1 b_1 b_2\}$ the set of all sequential sub-patterns and

$$E = S \cup S(\Lambda) = \{b_1, b_2, b_3, b_1 b_1, b_1 b_1 b_1, b_1 b_1 b_1 b_2\}$$

Step 2 define the state space

$$\Omega = \{(u, v) | u = 0, 1, \ldots, [n/4], v \in E\} \cup \{\emptyset\} \setminus \{(0, b_1 b_1 b_1 b_2)\}$$
Step 3: define the Markov chain

\[Y_t = (X_t(\Lambda), E_t), \quad t = 1, 2, \ldots, n \]

such that \(Y_t(\omega) = (u, v) \in \Omega \), where

- \(u = X_t(\Lambda)(\omega) \) - the total number of non-overlapping occurrences of the pattern \(\Lambda \) in the first \(t \) trials, counting forward from the first to the \(t \)-th trial
- \(v = E_t(\omega) \) - the longest ending block in \(E \), counting backward from \(X_t \).
Step 3 define the Markov chain

\[Y_t = (X_t(\Lambda), E_t), \quad t = 1, 2, \ldots, n \]

such that \(Y_t(\omega) = (u, v) \in \Omega \), where

\[u = X_t(\Lambda)(\omega) \] - the total number of non-overlapping occurrences of the pattern \(\Lambda \) in the first \(t \) trials, counting forward from the first to the \(t \)-th trial

\[v = E_t(\omega) \] - the longest ending block in \(\mathcal{E} \), counting backward from \(X_t \).
Step 3 define the Markov chain

\[Y_t = (X_t(\Lambda), E_t), \quad t = 1, 2, \ldots, n \]

such that \(Y_t(\omega) = (u, v) \in \Omega \), where

- \(u = X_t(\Lambda)(\omega) \) - the total number of non-overlapping occurrences of the pattern \(\Lambda \) in the first \(t \) trials, counting \textit{forward} from the first to the \(t \)-th trial
- \(v = E_t(\omega) \) - the longest ending block in \(\mathcal{E} \), counting \textit{backward} from \(X_t \).
Considering the realization:

\[\omega = (b_2 b_3 b_1 b_1 b_2 b_1 b_1 b_2 b_1 b_3 b_1) \]

\(Y_1(\omega) = (0, b_2) \)	\(Y_5(\omega) = (0, b_2) \)	\(Y_9(\omega) = (1, b_1 b_1 b_1 b_2) \)
\(Y_2(\omega) = (0, b_3) \)	\(Y_6(\omega) = (0, b_1) \)	\(Y_{10}(\omega) = (1, b_1) \)
\(Y_3(\omega) = (0, b_1) \)	\(Y_7(\omega) = (0, b_1 b_1) \)	\(Y_{11}(\omega) = (1, b_3) \)
\(Y_4(\omega) = (0, b_1 b_1) \)	\(Y_8(\omega) = (0, b_1 b_1 b_1) \)	\(Y_{12}(\omega) = (1, b_1) \)
Step 4 the transition matrix M can be determined for example by

$$(0, b_1 b_1 b_1) \rightarrow \begin{cases}
(0, b_1 b_1 b_1), & X_9 = b_1, \text{probability is } p_{11} \\
(1, b_1 b_1 b_1 b_2), & X_9 = b_2, \text{probability is } p_{12} \\
(0, b_3), & X_9 = b_3, \text{probability is } p_{13}
\end{cases}$$

- \emptyset - the dummy state
- $P(Y_1 = b_i|Y_0 = \emptyset) = p_i$ with $i = 1, 2, 3$ the initial distribution

Step 5 the partition

$$C_x = \begin{cases}
C_{\emptyset} = \{\emptyset\} \\
C_0 = \{(0, b_1), (0, b_2), (0, b_3), (0, b_1 b_1), (0, b_1 b_1 b_1)\} \\
C_z = \{(z, v)|v \in E, z = 1, \ldots, [n/4]\}.
\end{cases}$$
Step 4 the transition matrix M can be determined for example by

$$(0, b_1 b_1 b_1) \rightarrow \begin{cases}
(0, b_1 b_1 b_1), & X_9 = b_1, \text{probability is } p_{11} \\
(1, b_1 b_1 b_1 b_2), & X_9 = b_2, \text{probability is } p_{12} \\
(0, b_3), & X_9 = b_3, \text{probability is } p_{13}
\end{cases}$$

- \emptyset - the dummy state
- $\mathbb{P}(Y_1 = b_i | Y_0 = \emptyset) = p_i$ with $i = 1, 2, 3$ the initial distribution

Step 5 the partition

$$C_x = \begin{cases}
C_{\emptyset} = \{\emptyset\} \\
C_0 = \{(0, b_1), (0, b_2), (0, b_3), (0, b_1 b_1), (0, b_1 b_1 b_1)\} \\
C_z = \{(z, v) | v \in E, z = 1, \ldots, \lfloor n/4 \rfloor\}.
\end{cases}$$
Step 4 the transition matrix M can be determined for example by

\[(0, b_1 b_1 b_1) \rightarrow \begin{cases}
(0, b_1 b_1 b_1), & X_9 = b_1, \text{ probability is } p_{11} \\
(1, b_1 b_1 b_1 b_2), & X_9 = b_2, \text{ probability is } p_{12} \\
(0, b_3), & X_9 = b_3, \text{ probability is } p_{13}
\end{cases}\]

- \emptyset - the dummy state
- $\mathbb{P}(Y_1 = b_i | Y_0 = \emptyset) = p_i$ with $i = 1, 2, 3$ the initial distribution

Step 5 the partition

\[C_x = \begin{cases}
C_{\emptyset} = \{\emptyset\} \\
C_0 = \{(0, b_1), (0, b_2), (0, b_3), (0, b_1 b_1), (0, b_1 b_1 b_1)\} \\
C_z = \{(z, v) | v \in \mathcal{E}, z = 1, \ldots, [n/4]\}.
\]
Step 4 the transition matrix M can be determined for example by

$$(0, b_1 b_1 b_1) \rightarrow \begin{cases}
(0, b_1 b_1 b_1), & X_9 = b_1, \text{ probability is } p_{11} \\
(1, b_1 b_1 b_1 b_2), & X_9 = b_2, \text{ probability is } p_{12} \\
(0, b_3), & X_9 = b_3, \text{ probability is } p_{13}
\end{cases}$$

- \emptyset - the dummy state
- $P(Y_1 = b_i | Y_0 = \emptyset) = p_i$ with $i = 1, 2, 3$ the initial distribution

Step 5 the partition

$$C_x = \begin{cases}
C_\emptyset = \{\emptyset\} \\
C_0 = \{(0, b_1), (0, b_2), (0, b_3), (0, b_1 b_1), (0, b_1 b_1 b_1)\} \\
C_z = \{(z, v) | v \in \mathcal{E}, z = 1, \ldots, \lfloor n/4 \rfloor\}.
\end{cases}$$
The transition matrix \((n = 5)\) \(M:\)

\[
\begin{pmatrix}
\emptyset & a_1 & a_2 & a_3 & a_4 & a_5 & a_6 & a_7 & a_8 & a_9 & a_{10} & a_{11} \\
0 & p_1 & p_2 & p_3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & p_{12} & p_{13} & p_{11} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & p_{21} & p_{22} & p_{23} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & p_{31} & p_{32} & p_{33} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & p_{12} & p_{13} & 0 & p_{11} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & p_{13} & 0 & p_{11} & p_{12} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & p_{21} & p_{22} & p_{23} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & p_{12} & p_{13} & p_{11} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & p_{21} & p_{22} & p_{23} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & p_{31} & p_{32} & p_{33} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & p_{12} & p_{13} & 0 & p_{11} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix}
\]

A. Amarioarei (Laboratoire P. Painlevé)
Outline

1 Introduction
 ● Problem

2 Description of the method
 ● Definitions and main results
 ● The forward-backward principle

3 Waiting time distributions
 ● Definitions and main results
 ● An example

4 Applications to Scan Statistics
 ● Model
 ● Numerical example

5 Conclusions

6 References
Definition

- the waiting time for a simple pattern $\Lambda = b_{i_1}b_{i_2} \ldots b_{i_k}$

$$W(\Lambda) = \inf \{ n | X_{n-k+1} = b_{i_1}, \ldots, X_n = b_{i_k} \}$$

- the waiting time of a compound pattern $\Lambda = \cup_{i=1}^{l} \Lambda_i$

$W(\Lambda) =$ minimum number of trials required to observe the occurrence of one of the simple patterns $\Lambda_1, \ldots, \Lambda_l$

- the waiting time of the r-th occurrence of the pattern Λ

$W(r, \Lambda) =$ minimum number of trials required to observe the r-th occurrence of the pattern Λ

The duality property:

$$\mathbb{P}(X_n(\Lambda) < r) = \mathbb{P}(W(r, \Lambda) > n).$$
Definition

- The waiting time for a simple pattern \(\Lambda = b_{i_1} b_{i_2} \ldots b_{i_k} \)

\[
W(\Lambda) = \inf \{ n | X_{n-k+1} = b_{i_1}, \ldots, X_n = b_{i_k} \}
\]

- The waiting time of a compound pattern \(\Lambda = \bigcup_{i=1}^{l} \Lambda_i \)

\[
W(\Lambda) = \text{minimum number of trials required to observe the occurrence of one of the simple patterns } \Lambda_1, \ldots, \Lambda_l
\]

- The waiting time of the \(r \)-th occurrence of the pattern \(\Lambda \)

\[
W(r, \Lambda) = \text{minimum number of trials required to observe the } r \text{-th occurrence of the pattern } \Lambda
\]

The duality property:

\[
P(X_n(\Lambda) < r) = P(W(r, \Lambda) > n).
\]
Definition

- The waiting time for a simple pattern $\Lambda = b_{i_1} b_{i_2} \ldots b_{i_k}$

 $$W(\Lambda) = \inf \{ n | X_{n-k+1} = b_{i_1}, \ldots, X_n = b_{i_k} \}$$

- The waiting time of a compound pattern $\Lambda = \bigcup_{i=1}^l \Lambda_i$

 $W(\Lambda) =$ minimum number of trials required to observe the occurrence of one of the simple patterns $\Lambda_1, \ldots, \Lambda_l$

- The waiting time of the r-th occurrence of the pattern Λ

 $W(r, \Lambda) =$ minimum number of trials required to observe the r-th occurrence of the pattern Λ

The duality property:

$$\mathbb{P}(X_n(\Lambda) < r) = \mathbb{P}(W(r, \Lambda) > n).$$
Waiting time distributions

Definitions and main results

Definition

- the waiting time for a simple pattern $\Lambda = b_{i_1} b_{i_2} \ldots b_{i_k}$

 $$W(\Lambda) = \inf \{n | X_{n-k+1} = b_{i_1}, \ldots, X_n = b_{i_k} \}$$

- the waiting time of a compound pattern $\Lambda = \bigcup_{i=1}^{l} \Lambda_i$
 $$W(\Lambda) = \text{minimum number of trials required to observe the occurrence of one of the simple patterns } \Lambda_1, \ldots, \Lambda_l$$

- the waiting time of the r-th occurrence of the pattern Λ
 $$W(r, \Lambda) = \text{minimum number of trials required to observe the } r\text{-th occurrence of the pattern } \Lambda$$

The duality property:

$$P(X_n(\Lambda) < r) = P(W(r, \Lambda) > n).$$
Definition

- the waiting time for a simple pattern \(\Lambda = b_{i_1} b_{i_2} \ldots b_{i_k} \)

\[
W(\Lambda) = \inf \{ n | X_{n-k+1} = b_{i_1}, \ldots, X_n = b_{i_k} \}
\]

- the waiting time of a compound pattern \(\Lambda = \bigcup_{i=1}^l \Lambda_i \)

\(W(\Lambda) = \) minimum number of trials required to observe the occurrence of one of the simple patterns \(\Lambda_1, \ldots, \Lambda_l \)

- the waiting time of the \(r \)-th occurrence of the pattern \(\Lambda \)

\(W(r, \Lambda) = \) minimum number of trials required to observe the \(r \)-th occurrence of the pattern \(\Lambda \)

The duality property:

\[
\mathbb{P}(X_n(\Lambda) < r) = \mathbb{P}(W(r, \Lambda) > n).
\]
Given:

- the Markov chain \((X_t)_{1,\infty}\) over the alphabet \(S = \{b_1, \ldots, b_m\}\)
- compound pattern \(\Lambda = \bigcup_{i=1}^l \Lambda_i\)

we have using the *forward-backward* principle:

- the state space \(\Omega = \{\emptyset\} \cup S \cup \bigcup_{i=1}^l S(\Lambda_i)\)
- \(A = \{\alpha_1, \ldots, \alpha_l\}\) the set of absorbing states corresponding to the simple pattern \(\Lambda_i\)
- for \(Y_{t-1} = u \in \Omega \setminus A \setminus \{\emptyset\}\) and \(X_t = z \in S\) we define the longest ending block

\[v = \langle u, z \rangle_{\Omega}\]

and the set

\[[u : S] = \{v \mid v \in \Omega, v = \langle u, z \rangle_{\Omega}, z \in S\}\]
Given:

- the Markov chain \((X_t)_{1,\infty}\) over the alphabet \(S = \{b_1, \ldots, b_m\}\)
- compound pattern \(\Lambda = \bigcup_{i=1}^{l} \Lambda_i\)

we have using the *forward-backward* principle:

- the state space \(\Omega = \{\emptyset\} \cup S \cup \bigcup_{i=1}^{l} S(\Lambda_i)\)
- \(A = \{\alpha_1, \ldots, \alpha_l\}\) the set of absorbing states corresponding to the simple pattern \(\Lambda_i\)
- for \(Y_{t-1} = u \in \Omega \setminus A \setminus \{\emptyset\}\) and \(X_t = z \in S\) we define the longest ending block

\[v = \langle u, z \rangle_{\Omega} \]

and the set

\[[u : S] = \{v | v \in \Omega, v = \langle u, z \rangle_{\Omega}, z \in S\} \]
Given:

- the Markov chain \((X_t)_{1,\infty}\) over the alphabet \(S = \{b_1, \ldots, b_m\}\)
- compound pattern \(\Lambda = \bigcup_{i=1}^{l} \Lambda_i\)

we have using the \textit{forward-backward} principle:

- the state space
 \[
 \Omega = \{\emptyset\} \cup S \cup \bigcup_{i=1}^{l} S(\Lambda_i)
 \]
- \(A = \{\alpha_1, \ldots, \alpha_l\}\) the set of absorbing states corresponding to the simple pattern \(\Lambda_i\)
- for \(Y_{t-1} = u \in \Omega \setminus A \setminus \{\emptyset\}\) and \(X_t = z \in S\) we define the longest ending block
 \[
 v = \langle u, z \rangle_{\Omega}
 \]

and the set

\[
[u : S] = \{v \mid v \in \Omega, v = \langle u, z \rangle_{\Omega}, z \in S\}
\]
Given:

- the Markov chain $(X_t)_{1,\infty}$ over the alphabet $S = \{b_1, \ldots, b_m\}$
- compound pattern $\Lambda = \bigcup_{i=1}^{l} \Lambda_i$

we have using the forward-backward principle:

- the state space
 $$\Omega = \{\emptyset\} \cup S \cup_{i=1}^{l} S(\Lambda_i)$$
- $A = \{\alpha_1, \ldots, \alpha_l\}$ the set of absorbing states corresponding to the simple pattern Λ_i
- for $Y_{t-1} = u \in \Omega \setminus A \setminus \{\emptyset\}$ and $X_t = z \in S$ we define the longest ending block
 $$v = \langle u, z \rangle_{\Omega}$$

and the set

$$[u : S] = \{v | v \in \Omega, v = \langle u, z \rangle_{\Omega}, z \in S\}$$
Given:
- the Markov chain \((X_t)_{1,\infty}\) over the alphabet \(S = \{b_1, \ldots, b_m\}\)
- compound pattern \(\Lambda = \bigcup_{i=1}^{l} \Lambda_i\);

we have using the forward-backward principle:
- the state space
 \[
 \Omega = \{\emptyset\} \cup S \cup \bigcup_{i=1}^{l} S(\Lambda_i)
 \]
- \(A = \{\alpha_1, \ldots, \alpha_l\}\) the set of absorbing states corresponding to the simple pattern \(\Lambda_i\)
- for \(Y_{t-1} = u \in \Omega \setminus A \setminus \{\emptyset\}\) and \(X_t = z \in S\) we define the longest ending block
 \[
 v = \langle u, z \rangle_\Omega
 \]
 and the set
 \[
 [u : S] = \{v | v \in \Omega, v = \langle u, z \rangle_\Omega, z \in S\}
 \]
Theorem

1. The transition probabilities of the imbedded Markov chain Y_t,

$$ p_{u,v} = \mathbb{P}(Y_t = v | Y_{t-1} = u) = \begin{cases}
 p_z, & \text{if } u = \emptyset, v = z, z \in S \\
 p_{xz}, & \text{if } u \in \Omega \setminus A \setminus \{\emptyset\} \text{ and } v \in [u : S] \text{ and } X_t = z \\
 1, & \text{if } u \in A \text{ and } v = u \\
 0, & \text{otherwise}
\end{cases} $$

where x is the last symbol of u and $p_z = \mathbb{P}(Y_1 = z | Y_0 = \emptyset)$

$$ M = \begin{pmatrix}
 N^{(d-1) \times (d-1)} & C \\
 O & I
\end{pmatrix}_{d \times d} $$

2. Given the initial distribution $\xi_0 = (\xi : 0)$

$$ \mathbb{P}(W(\Lambda) = n) = \xi N^{n-1}(I - N)1^T $$
Theorem

1. the transition probabilities of the imbedded Markov chain Y_t,

$$p_{u,v} = \mathbb{P}(Y_t = v | Y_{t-1} = u) = \begin{cases}
 p_z, & \text{if } u = \emptyset, v = z, z \in S \\
 p_{xz}, & \text{if } u \in \Omega \setminus A \setminus \{\emptyset\} \\
 v \in [u : S] \text{ and } X_t = z \\
 1, & \text{if } u \in A \text{ and } v = u \\
 0, & \text{otherwise}
\end{cases}$$

where x is the last symbol of u and $p_z = \mathbb{P}(Y_1 = z | Y_0 = \emptyset)$

$$M = \begin{pmatrix}
 N_{(d-l) \times (d-l)} & C \\
 O & I
\end{pmatrix}_{d \times d}$$

2. given the initial distribution $\xi_0 = (\xi : 0)$

$$\mathbb{P}(W(\Lambda) = n) = \xi N^{n-1}(I - N)1^\top$$
Theorem

1. the transition probabilities of the imbedded Markov chain Y_t,

$$p_{u,v} = \mathbb{P}(Y_t = v | Y_{t-1} = u) = \begin{cases}
 p_z, & \text{if } u = \emptyset, v = z, z \in S \\
 p_{xz}, & \text{if } u \in \Omega \setminus A \setminus \{\emptyset\} \\
 v \in [u : S] \text{ and } X_t = z \\
 1, & \text{if } u \in A \text{ and } v = u \\
 0, & \text{otherwise}
\end{cases}$$

where x is the last symbol of u and $p_z = \mathbb{P}(Y_1 = z | Y_0 = \emptyset)$

$$M = \begin{pmatrix} N^{(d-1) \times (d-1)} & C \\ O & I \end{pmatrix}_{d \times d}$$

2. given the initial distribution $\xi_0 = (\xi : 0)$

$$\mathbb{P}(W(\Lambda) = n) = \xi N^{n-1}(I - N)1^T$$
Waiting time of the r-th occurrence

For $W(r, \Lambda)$

- the state space

$$\Omega^{(r)} = \{\emptyset\} \cup \Omega_1 \cup \Omega_2 \cup A$$

- $A = \{\alpha_1, \ldots, \alpha_l\}$ is the set of all the absorbing states α_j corresponding to the r-th occurrence of the pattern Λ_j

$$\Omega_1 = \{(u, v) | u = 0, \ldots, r - 1; v \in S \cup S(\Lambda_1) \cdots \cup S(\Lambda_l) \setminus A\},$$

$$\Omega_2 = \{(u, v) | u = 1, \ldots, r - 1; v \in B\}$$

where B is the collection of the last symbols of Λ_i, $i = 1, \ldots, l$ (we add some mark to distinguish from S)
Waiting time of the r-th occurrence

For $W(r, \Lambda)$

- the state space

$$\Omega^{(r)} = \{\emptyset\} \cup \Omega_1 \cup \Omega_2 \cup A$$

- $A = \{\alpha_1, \ldots, \alpha_l\}$ is the set of all the absorbing states α_j corresponding to the r-th occurrence of the pattern Λ_j

$$\Omega_1 = \{(u,v) | u = 0, \ldots, r - 1; v \in S \cup S(\Lambda_1) \cdots \cup S(\Lambda_l) \setminus A\},$$
$$\Omega_2 = \{(u,v) | u = 1, \ldots, r - 1; v \in B\}$$

where B is the collection of the last symbols of $\Lambda_i, i = 1, \ldots, l$ (we add some mark to distinguish from S)
Waiting time of the r-th occurrence

For $W(r, \Lambda)$
- the state space
 \[\Omega^{(r)} = \{\emptyset\} \cup \Omega_1 \cup \Omega_2 \cup A \]
- $A = \{\alpha_1, \ldots, \alpha_l\}$ is the set of all the absorbing states α_j
corresponding to the r-th occurrence of the pattern Λ_j

\[\Omega_1 = \{(u, v) | u = 0, \ldots, r - 1; v \in S \cup S(\Lambda_1) \cdots \cup S(\Lambda_l) \setminus A\}, \]
\[\Omega_2 = \{(u, v) | u = 1, \ldots, r - 1; v \in B\} \]

where B is the collection of the last symbols of Λ_i, $i = 1, \ldots, l$ (we add some mark to distinguish from S)
Outline

1 Introduction
 • Problem

2 Description of the method
 • Definitions and main results
 • The forward-backward principle

3 Waiting time distributions
 • Definitions and main results
 • An example

4 Applications to Scan Statistics
 • Model
 • Numerical example

5 Conclusions

6 References
Example

Given,

- the alphabet $\mathcal{S} = \{A, C, G, T\}$
- the Chi motif $\Lambda = GNTGGTG$ where $N \in \mathcal{S}$
- the transition matrix (estimated over *Escherichia Coli* genome)

\[
\begin{pmatrix}
 p_{AA} & p_{AC} & p_{AG} & p_{AT} \\
 p_{CA} & p_{CC} & p_{CG} & p_{CT} \\
 p_{GA} & p_{GC} & p_{GG} & p_{GT} \\
 p_{TA} & p_{TC} & p_{TG} & p_{TT}
\end{pmatrix} =
\begin{pmatrix}
 0.30 & 0.21 & 0.22 & 0.27 \\
 0.23 & 0.23 & 0.32 & 0.22 \\
 0.28 & 0.29 & 0.23 & 0.20 \\
 0.19 & 0.28 & 0.23 & 0.30
\end{pmatrix}
\]

and the stationary distribution

\[
\mu = (0.2501, 0.2524, 0.2502, 0.2473)
\]
Example

Given,

- the alphabet $S = \{A, C, G, T\}$
- the Chi motif $\Lambda = GNTGGTGG$ where $N \in S$
- the transition matrix (estimated over *Escherichia Coli* genome)

$$
\begin{pmatrix}
A & C & G & T \\
p_{AA} & p_{AC} & p_{AG} & p_{AT} \\
p_{CA} & p_{CC} & p_{CG} & p_{CT} \\
p_{GA} & p_{GC} & p_{GG} & p_{GT} \\
p_{TA} & p_{TC} & p_{TG} & p_{TT}
\end{pmatrix}
=
\begin{pmatrix}
0.30 & 0.21 & 0.22 & 0.27 \\
0.23 & 0.23 & 0.32 & 0.22 \\
0.28 & 0.29 & 0.23 & 0.20 \\
0.19 & 0.28 & 0.23 & 0.30
\end{pmatrix}
$$

and the stationary distribution

$$
\mu = (0.2501, 0.2524, 0.2502, 0.2473)
$$
Example

Given,

- the alphabet $S = \{A, C, G, T\}$
- the Chi motif $\Lambda = GNTGGTGG$ where $N \in S$
- the transition matrix (estimated over *Escherichia Coli* genome)

$$
\begin{pmatrix}
 p_{AA} & p_{AC} & p_{AG} & p_{AT} \\
p_{CA} & p_{CC} & p_{CG} & p_{CT} \\
p_{GA} & p_{GC} & p_{GG} & p_{GT} \\
p_{TA} & p_{TC} & p_{TG} & p_{TT}
\end{pmatrix}
=
\begin{pmatrix}
 0.30 & 0.21 & 0.22 & 0.27 \\
 0.23 & 0.23 & 0.32 & 0.22 \\
 0.28 & 0.29 & 0.23 & 0.20 \\
 0.19 & 0.28 & 0.23 & 0.30
\end{pmatrix}
$$

and the stationary distribution

$$
\mu = (0.2501, 0.2524, 0.2502, 0.2473)
$$
Comparison between i.i.d. and Markov case:
Outline

1. Introduction
 - Problem

2. Description of the method
 - Definitions and main results
 - The forward-backward principle

3. Waiting time distributions
 - Definitions and main results
 - An example

4. Applications to Scan Statistics
 - Model
 - Numerical example

5. Conclusions

6. References
Scan Statistics

- \((X_t)_{t=1,n}\) - two-state Markov dependent

\[
P = \begin{pmatrix} p_{00} & p_{01} \\ p_{10} & p_{11} \end{pmatrix}
\]

- the scan statistic of window size \(r\)

\[
S_n(r) = \max_{r \leq t \leq n} \sum_{k=t-r+1}^{t} X_k.
\]

- the idea is to express the distribution of the \(S_n(r)\) in terms of the waiting time distribution of a special compound pattern
Scan Statistics

- \((X_t)_{t=1,n}\) - two-state Markov dependent

\[P = \begin{pmatrix} p_{00} & p_{01} \\ p_{10} & p_{11} \end{pmatrix} \]

- the scan statistic of window size \(r\)

\[S_n(r) = \max_{r \leq t \leq n} \sum_{k=t-r+1}^{t} X_k. \]

- the idea is to express the distribution of the \(S_n(r)\) in terms of the waiting time distribution of a special compound pattern
Scan Statistics

- $(X_t)_{t=1,n}$ - two-state Markov dependent

$$P = \begin{pmatrix} p_{00} & p_{01} \\ p_{10} & p_{11} \end{pmatrix}$$

- the scan statistic of window size r

$$S_n(r) = \max_{r \leq t \leq n} \sum_{k=t-r+1}^{t} X_k.$$

- the idea is to express the distribution of the $S_n(r)$ in terms of the waiting time distribution of a special compound pattern
Distribution of Scan Statistics in 4 Steps

1. define for $0 \leq k \leq r$

$$\mathcal{F}_{r,k} = \{ \Lambda_i | \Lambda_1 = \underbrace{1 \ldots 1}_k, \Lambda_2 = \underbrace{10 \ldots 1}_{k-1}, \ldots, \Lambda_l = \underbrace{1 \ldots 1}_{k-1} 0 \ldots 01 \}$$

$$|\mathcal{F}_{r,k}| = \sum_{j=0}^{r-k} \binom{k-2+j}{j}$$

2. the compound pattern $\Lambda = \bigcup_{i=1}^l \Lambda_i$, $\Lambda_i \in \mathcal{F}_{r,k}$

3. the dual property

$$\mathbb{P}(S_n(r) < k) = \mathbb{P}(W(\Lambda) \geq n + 1).$$

4. the matrix formula

$$\mathbb{P}(S_n(r) < k) = \xi N^T 1, \text{where } \xi = (1, 0, \ldots, 0)$$
Distribution of Scan Statistics in 4 Steps

1. Define for $0 \leq k \leq r$

 $$\mathcal{F}_{r,k} = \{ \Lambda_i | \Lambda_1 = 1 \ldots 1, \Lambda_2 = 10 1 \ldots 1, \ldots, \Lambda_l = 1 \ldots 1 0 \ldots 01 \}$$

 $$|\mathcal{F}_{r,k}| = \sum_{j=0}^{r-k} \binom{k-2+j}{j}$$

2. The compound pattern $\Lambda = \bigcup_{i=1}^{l} \Lambda_i, \Lambda_i \in \mathcal{F}_{r,k}$

3. The dual property

 $$\mathbb{P}(S_n(r) < k) = \mathbb{P}(W(\Lambda) \geq n + 1).$$

4. The matrix formula

 $$\mathbb{P}(S_n(r) < k) = \xi N^n 1^\top, \text{ where } \xi = (1, 0, \ldots, 0)$$
Applications to Scan Statistics

Distribution of Scan Statistics in 4 Steps

1. Define for $0 \leq k \leq r$

\[\mathcal{F}_{r,k} = \{ \Lambda_i | \Lambda_1 = 1 \ldots 1, \Lambda_2 = 10 \ldots 1, \ldots, \Lambda_l = 1 \ldots 1 0 \ldots 01 \} \]

\[|\mathcal{F}_{r,k}| = \sum_{j=0}^{r-k} \binom{k-2+j}{j} \]

2. The compound pattern $\Lambda = \bigcup_{i=1}^{l} \Lambda_i$, $\Lambda_i \in \mathcal{F}_{r,k}$

3. The dual property

\[\mathbb{P}(S_n(r) < k) = \mathbb{P}(W(\Lambda) \geq n + 1). \]

4. The matrix formula

\[\mathbb{P}(S_n(r) < k) = \xi N^n 1^\top, \text{where } \xi = (1, 0, \ldots, 0) \]
Distribution of Scan Statistics in 4 Steps

1. Define for $0 \leq k \leq r$

$$\mathcal{F}_{r,k} = \{\Lambda_i | \Lambda_1 = 1 \ldots 1, \Lambda_2 = 10 1 \ldots 1, \ldots, \Lambda_I = 1 \ldots 1 0 \ldots 01\}$$

$$|\mathcal{F}_{r,k}| = \sum_{j=0}^{r-k} \left(\begin{array}{c} k - 2 + j \\ j \end{array}\right)$$

2. The compound pattern $\Lambda = \bigcup_{i=1}^I \Lambda_i$, $\Lambda_i \in \mathcal{F}_{r,k}$

3. The dual property

$$\mathbb{P}(S_n(r) < k) = \mathbb{P}(W(\Lambda) \geq n + 1).$$

4. The matrix formula

$$\mathbb{P}(S_n(r) < k) = \xi N^n 1^T, \text{ where } \xi = (1, 0, \ldots, 0)$$
Example

- **an illustration for** $n = 20$ and $r = 3$

\[S_{20}(3) = 1 \]

- **for** $r = 4$ and $k = 3$

\[F_{4,3} = \{ \Lambda_1 = 111, \Lambda_2 = 1011, \Lambda_3 = 1101 \} \]

- **the state space**

\[\Omega = \{ \emptyset, 0, 1, 10, 11, 101, 110, \alpha_1, \alpha_2, \alpha_3 \} \]
Example

- an illustration for $n = 20$ and $r = 3$

 $S_{20}(3) = 1$

- for $r = 4$ and $k = 3$

 $\mathcal{F}_{4,3} = \{\Lambda_1 = 111, \Lambda_2 = 1011, \Lambda_3 = 1101\}$

- the state space

 $\Omega = \{\emptyset, 0, 1, 10, 11, 101, 110, \alpha_1, \alpha_2, \alpha_3\}$
Example

- an illustration for $n = 20$ and $r = 3$

\[
\begin{array}{ccccccccccccccc}
0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0
\end{array}
\]

$S_{20}(3) = 2$

- for $r = 4$ and $k = 3$

\[\mathcal{F}_{4,3} = \{\Lambda_1 = 111, \Lambda_2 = 1011, \Lambda_3 = 1101\}\]

- the state space

\[\Omega = \{\emptyset, 0, 1, 10, 11, 101, 110, \alpha_1, \alpha_2, \alpha_3\}\]
Example

- an illustration for \(n = 20 \) and \(r = 3 \)

 \[
 \begin{array}{cccccccccccccccccccc}
 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 \\
 \end{array}
 \]

 \[S_{20}(3) = 1 \]

- for \(r = 4 \) and \(k = 3 \)

 \[
 F_{4,3} = \{ \Lambda_1 = 111, \Lambda_2 = 1011, \Lambda_3 = 1101 \}
 \]

- the state space

 \[
 \Omega = \{ \emptyset, 0, 1, 10, 11, 101, 110, \alpha_1, \alpha_2, \alpha_3 \}
 \]
Example

- an illustration for $n = 20$ and $r = 3$
 \[
 \begin{array}{cccccccccccccccc}
 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 \\
 \end{array}
 \]
 \[S_{20}(3) = 2\]

- for $r = 4$ and $k = 3$
 \[\mathcal{F}_{4,3} = \{\Lambda_1 = 111, \Lambda_2 = 1011, \Lambda_3 = 1101\}\]

- the state space
 \[\Omega = \{\emptyset, 0, 1, 10, 11, 101, 110, \alpha_1, \alpha_2, \alpha_3\}\]
Example

- an illustration for $n = 20$ and $r = 3$

 $S_{20}(3) = 2$

- for $r = 4$ and $k = 3$

 $\mathcal{F}_{4,3} = \{\Lambda_1 = 111, \Lambda_2 = 1011, \Lambda_3 = 1101\}$

- the state space

 $\Omega = \{\emptyset, 0, 1, 10, 11, 101, 110, \alpha_1, \alpha_2, \alpha_3\}$
Example

- an illustration for \(n = 20 \) and \(r = 3 \)

\[
0 \ 0 \ 1 \ 0 \ 0 \ 1 \ 1 \ 1 \ 1 \ 0 \ 1 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 1 \ 0
\]

\(S_{20}(3) = 3 \)

- for \(r = 4 \) and \(k = 3 \)

\[F_{4,3} = \{ \Lambda_1 = 111, \Lambda_2 = 1011, \Lambda_3 = 1101 \} \]

- the state space

\[\Omega = \{ \emptyset, 0, 1, 10, 11, 101, 110, \alpha_1, \alpha_2, \alpha_3 \} \]
Example

- an illustration for \(n = 20 \) and \(r = 3 \)

\[
\begin{array}{cccccccccccccccc}
0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 0
\end{array}
\]

\(S_{20}(S(3)|3) = 2 \)

- for \(r = 4 \) and \(k = 3 \)

\[
\mathcal{F}_{4,3} = \{\Lambda_1 = 111, \Lambda_2 = 1011, \Lambda_3 = 1101\}
\]

- the state space

\[
\Omega = \{\emptyset, 0, 1, 10, 11, 101, 110, \alpha_1, \alpha_2, \alpha_3\}
\]
Example

- An illustration for $n = 20$ and $r = 3$

 $S_{20}(3)S_{20}(3) = 2$

- For $r = 4$ and $k = 3$

 $\mathcal{F}_{4,3} = \{\Lambda_1 = 111, \Lambda_2 = 1011, \Lambda_3 = 1101\}$

- The state space

 $\Omega = \{\emptyset, 0, 1, 10, 11, 101, 110, \alpha_1, \alpha_2, \alpha_3\}$
Example

- an illustration for $n = 20$ and $r = 3$

 \[
 S_{20}(3) = S_{20}(3) = 2
 \]

- for $r = 4$ and $k = 3$
 \[
 \mathcal{F}_{4,3} = \{\Lambda_1 = 111, \Lambda_2 = 1011, \Lambda_3 = 1101\}
 \]

- the state space
 \[
 \Omega = \{\emptyset, 0, 1, 10, 11, 101, 110, \alpha_1, \alpha_2, \alpha_3\}
 \]
Example

- an illustration for $n = 20$ and $r = 3$

\[
\begin{array}{cccccccccc}
0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0
\end{array}
\]

\[S_{20}(3) = 3 \quad S_{20}(3) = 2\]

- for $r = 4$ and $k = 3$

\[\mathcal{F}_{4,3} = \{\Lambda_1 = 111, \Lambda_2 = 1011, \Lambda_3 = 1101\}\]

- the state space

\[\Omega = \{\emptyset, 0, 1, 10, 11, 101, 110, \alpha_1, \alpha_2, \alpha_3\}\]
Example

- an illustration for $n = 20$ and $r = 3$

 \[
 \begin{array}{cccccccccccccccc}
 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 \\
 \end{array}
 \]

 $S_{20}(3) = 3 \quad S_{20}(3) = 2$

- for $r = 4$ and $k = 3$

 $F_{4,3} = \{ \Lambda_1 = 111, \Lambda_2 = 1011, \Lambda_3 = 1101 \}$

- the state space

 $\Omega = \emptyset, 0, 1, 10, 11, 101, 110, \alpha_1, \alpha_2, \alpha_3$
Example

- an illustration for $n = 20$ and $r = 3$

\[
\begin{array}{cccccccccccccccccc}
0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 \\
\end{array}
\]

$S_{20}(3) = 3$ \hspace{1cm} $S_{20}(3) = 1$

- for $r = 4$ and $k = 3$

$\mathcal{F}_{4,3} = \{\Lambda_1 = 111, \Lambda_2 = 1011, \Lambda_3 = 1101\}$

- the state space

$\Omega = \{\emptyset, 0, 1, 10, 11, 101, 110, \alpha_1, \alpha_2, \alpha_3\}$
Example

- an illustration for $n = 20$ and $r = 3$

\[
\begin{array}{cccccccccccc}
0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 \\
\end{array}
\]

\[S_{20}(3) = 3\] \[S_{20}(3) = 2\]

- for $r = 4$ and $k = 3$

\[\mathcal{F}_{4,3} = \{\Lambda_1 = 111, \Lambda_2 = 1011, \Lambda_3 = 1101\}\]

- the state space

\[\Omega = \{\emptyset, 0, 1, 10, 11, 101, 110, \alpha_1, \alpha_2, \alpha_3\}\]
Example

- an illustration for $n = 20$ and $r = 3$

\[
\begin{array}{cccccccccccc}
0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 \\
\end{array}
\]

$S_{20}(3) = 3$

- for $r = 4$ and $k = 3$

$\mathcal{F}_{4,3} = \{\Lambda_1 = 111, \Lambda_2 = 1011, \Lambda_3 = 1101\}$

- the state space

$\Omega = \{\emptyset, 0, 1, 10, 11, 101, 110, \alpha_1, \alpha_2, \alpha_3\}$
Example

- an illustration for $n = 20$ and $r = 3$

\[
\begin{array}{cccccccccccc}
0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 \\
\end{array}
\]

\[S_{20}(3) = 3\]

\[S_{20}(3) = 2\]

- for $r = 4$ and $k = 3$

\[\mathcal{F}_{4,3} = \{\Lambda_1 = 111, \Lambda_2 = 1011, \Lambda_3 = 1101\}\]

- the state space

\[\Omega = \{\emptyset, 0, 1, 10, 11, 101, 110, \alpha_1, \alpha_2, \alpha_3\}\]
Example

- an illustration for $n = 20$ and $r = 3$

 \[
 S_{20}(3) = 3
 \]

 \[
 S_{20}(3) = 2
 \]

- for $r = 4$ and $k = 3$

 \[
 \mathcal{F}_{4,3} = \{ \Lambda_1 = 111, \Lambda_2 = 1011, \Lambda_3 = 1101 \}
 \]

- the state space

 \[
 \Omega = \{ \emptyset, 0, 1, 10, 11, 101, 110, \alpha_1, \alpha_2, \alpha_3 \} \]
Example

- an illustration for $n = 20$ and $r = 3$

\[
\begin{array}{cccccccccccccccccccc}
0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0
\end{array}
\]

$S_{20}(3) = 3$

- for $r = 4$ and $k = 3$

\[\mathcal{F}_{4,3} = \{\Lambda_1 = 111, \Lambda_2 = 1011, \Lambda_3 = 1101\}\]

- the state space

\[\Omega = \{\emptyset, 0, 1, 10, 11, 101, 110, \alpha_1, \alpha_2, \alpha_3\}\]
Example

- an illustration for $n = 20$ and $r = 3$

 \[
 \begin{array}{cccccccccccccccc}
 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 \\
 \end{array}
 \]

 $S_{20}(3) = 3$

- for $r = 4$ and $k = 3$

 \[
 \mathcal{F}_{4,3} = \{ \Lambda_1 = 111, \Lambda_2 = 1011, \Lambda_3 = 1101 \}
 \]

- the state space

 \[
 \Omega = \{ \emptyset, 0, 1, 10, 11, 101, 110, \alpha_1, \alpha_2, \alpha_3 \}
 \]
Example

- an illustration for \(n = 20 \) and \(r = 3 \)

 \[
 S_{20}(3) = 3
 \]

- for \(r = 4 \) and \(k = 3 \)

 \[
 \mathcal{F}_{4,3} = \{ \Lambda_1 = 111, \Lambda_2 = 1011, \Lambda_3 = 1101 \}
 \]

- the state space

 \[
 \Omega = \{ \emptyset, 0, 1, 10, 11, 101, 110, \alpha_1, \alpha_2, \alpha_3 \}
 \]
the transition matrix M:

$$
\begin{pmatrix}
0 & q & p & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & p_{00} & p_{01} & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & p_{10} & p_{11} & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & p_{00} & 0 & 0 & 0 & p_{01} & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & p_{10} & \cdots & p_{11} & 0 & 0 \\
0 & 0 & 0 & p_{10} & 0 & 0 & 0 & \cdots & 0 & p_{11} & 0 \\
0 & p_{00} & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & p_{01} \\
\cdots & \cdots \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 1 \\
\end{pmatrix}
$$
Outline

1 Introduction
 • Problem

2 Description of the method
 • Definitions and main results
 • The forward-backward principle

3 Waiting time distributions
 • Definitions and main results
 • An example

4 Applications to Scan Statistics
 • Model
 • Numerical example

5 Conclusions

6 References
An example for windows size $r = 10$

<table>
<thead>
<tr>
<th>n</th>
<th>k</th>
<th>$(p, q) = (0.4091, 0.5909)$</th>
<th>$p_{11} = 0.35, p_{21} = 0.45$</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>5</td>
<td>2.3233×10^{-4}</td>
<td>2.0318×10^{-4}</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.0166</td>
<td>0.0233</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.1953</td>
<td>0.2801</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0.6204</td>
<td>0.7488</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>0.9168</td>
<td>0.9638</td>
</tr>
<tr>
<td>300</td>
<td>5</td>
<td>5.8339×10^{-12}</td>
<td>3.7279×10^{-12}</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>2.9108×10^{-6}</td>
<td>8.1662×10^{-6}</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.0060</td>
<td>0.0185</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0.2223</td>
<td>0.4014</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>0.7595</td>
<td>0.8896</td>
</tr>
<tr>
<td>500</td>
<td>5</td>
<td>1.4649×10^{-19}</td>
<td>6.8399×10^{-20}</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>5.1014×10^{-10}</td>
<td>2.8665×10^{-9}</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1.8544×10^{-4}</td>
<td>0.0012</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0.0796</td>
<td>0.2151</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>0.6292</td>
<td>0.8212</td>
</tr>
</tbody>
</table>
Comparison between i.i.d. and Markov case:
Conclusions:

- **Advantages:**
 - The method gives exact results for the distribution of $X_n(\Lambda)$.
 - The method is simpler than the traditional approach.
 - The method can be used for both i.i.d. and Markov chain sources.

- **Disadvantages:**
 - For big n, the order of the state space and the transition matrix become very large, and in this case, the need for approximations methods is mandatory.
Conclusions:

Advantages:
- the method gives exact results for the distribution of $X_n(\Lambda)$
- the method is simpler than the traditional approach
- the method can be used for both: i.i.d. and Markov chain sources

Disadvantages:
- for big n the order of the state space and the transition matrix become very large and in this case the need for approximations methods is mandatory
Conclusions:

- **Advantages:**
 - The method gives exact results for the distribution of $X_n(\Lambda)$
 - The method is simpler than the traditional approach
 - The method can be used for both: i.i.d. and Markov chain sources

- **Disadvantages:**
 - For big n the order of the state space and the transition matrix become very large and in this case the need for approximations methods is mandatory
Conclusions:

- **Advantages:**
 - the method gives exact results for the distribution of $X_n(\Lambda)$
 - the method is simpler than the traditional approach
 - the method can be used for both: i.i.d. and Markov chain sources

- **Disadvantages:**
 - for big n the order of the state space and the transition matrix become very large and in this case the need for approximations methods is mandatory
Conclusions:

Advantages:
- the method gives exact results for the distribution of $X_n(\Lambda)$
- the method is simpler than the traditional approach
- the method can be used for both: i.i.d. and Markov chain sources

Disadvantages:
- for big n the order of the state space and the transition matrix become very large and in this case the need for approximations methods is mandatory
Conclusions:

- **Advantages:**
 - The method gives exact results for the distribution of $X_n(\Lambda)$.
 - The method is simpler than the traditional approach.
 - The method can be used for both: i.i.d. and Markov chain sources.

- **Disadvantages:**
 - For big n, the order of the state space and the transition matrix become very large, and in this case, the need for approximations methods is mandatory.

